16,283 research outputs found

    Carbon monoxide oxidation catalysis over Ir(110)

    Get PDF
    N/

    Calculation of two- and three-dimensional transonic cascade flow field using the Navier-Stokes equations

    Get PDF
    A Navier-Stokes analysis employing the time-dependent Linearized Block Implicit scheme (LBI) was applied to two-dimensional and three-dimensional transonic turbulent cascade flows. In general, the geometrical configuration of the turbine blade impacts both the grid construction procedure and the implementation of the numerical algorithm. Since modern turbine blades of interest are characterized by very blunt leading edges, rounded trailing edges and high stacking angles, a robust grid construction procedure is required that can accommodate the severe body shape while resolving regions of large flow gradients. A constructive O-type grid generation technique, suitable for cascades with rounded trailing edges, was developed and used to construct the C3X turbine cascade coordinate grid. Two-dimensional calculations were performed employing the Navier-Stokes procedure for the C3X turbine cascade, and the predicted pressure coefficients and heat transfer rates were compared with the experimental data. Three-dimensional Navier-Stokes calculations were also performed

    On the origin of cold dark matter halo density profiles

    Get PDF
    N-body simulations predict that CDM halo-assembly occurs in two phases: 1) a fast accretion phase with a rapidly deepening potential well; and 2) a slow accretion phase characterised by a gentle addition of mass to the outer halo with little change in the inner potential well. We demonstrate, using one-dimensional simulations, that this two-phase accretion leads to CDM halos of the NFW form and provides physical insight into the properties of the mass accretion history that influence the final profile. Assuming that the velocities of CDM particles are effectively isotropised by fluctuations in the gravitational potential during the fast accretion phase, we show that gravitational collapse in this phase leads to an inner profile rho(r) ~ r^{-1}. Slow accretion onto an established potential well leads to an outer profile with rho(r) ~ r^{-3}. The concentration of a halo is determined by the fraction of mass that is accreted during the fast accretion phase. Using an ensemble of realistic mass accretion histories, we show that the model predictions of the dependence of halo concentration on halo formation time, and hence the dependence of halo concentration on halo mass, and the distribution of halo concentrations all match those found in cosmological N-body simulations. Using a simple analytic model that captures much of the important physics we show that the inner r^{-1} profile of CDM halos is a natural result of hierarchical mass assembly with a initial phase of rapid accretion.Comment: Accepted for publication in MNRAS, references added, 11 pages, 8 figure

    Kinetics and mechanism of formic acid decomposition on Ru(001)

    Get PDF
    The steady-state rate of decomposition of formic acid on Ru(001) has been measured as a function of surface temperature, parametric in the pressure of formic acid. The products of the decomposition reaction are C0_2, H_2, CO, and H_2)0, i.e., both dehydrogenation and dehydration occur on Ru (001). A similar product distribution has been observed on Ni(110), Ni(100), Ru(100), Fe(100), and Ni(111) surfaces; whereas only dehydrogenation to C0_2 and H_2 occurs on the Cu(100), Cu(110), and Pt(111) surfaces. Only reversible adsorption and desorption of formic acid is observed on the less reactive Ag(110) surface at low temperatures, whereas the more reactive Mo(100) surface is oxidized by formic acid at low temperatures with the products of this reaction being H_2, CO, and H_(2)O (Ref. 10). We report here the confirmation of earlier observations of the occurrence of both dehydrogenation and dehydration of formic acid on Ru(001), and more importantly, we provide a detailed mechanistic description of the steady-state decomposition reaction on this surface in terms of elementary steps

    Nonrelativistic effective Lagrangians

    Full text link
    Chiral perturbation theory is extended to nonrelativistic systems with spontaneously broken symmetry. In the effective Lagrangian, order parameters associated with the generators of the group manifest themselves as effective coupling constants of a topological term, which is gauge invariant only up to a total derivative. In the case of the ferromagnet, a term connected with the Brouwer degree dominates the derivative expansion. The general analysis includes antiferromagnetic magnons and phonons, while the effective field theory of fluids or gases is beyond the scope of the method.Comment: 30 pages, BUTP-93/2

    Adiabatic Modes in Cosmology

    Get PDF
    We show that the field equations for cosmological perturbations in Newtonian gauge always have an adiabatic solution, for which a quantity R{\cal R} is non-zero and constant in all eras in the limit of large wavelength, so that it can be used to connect observed cosmological fluctuations in this mode with those at very early times. There is also a second adiabatic mode, for which R{\cal R} vanishes for large wavelength, and in general there may be non-adiabatic modes as well. These conclusions apply in all eras and whatever the constituents of the universe, under only a mild technical assumption about the wavelength dependence of the field equations for large wave length. In the absence of anisotropic inertia, the perturbations in the adiabatic modes are given for large wavelength by universal formulas in terms of the Robertson--Walker scale factor. We discuss an apparent discrepancy between these results and what appears to be a conservation law in all modes found for large wavelength in synchronous gauge: it turns out that, although equivalent, synchronous and Newtonian gauges suggest inequivalent assumptions about the behavior of the perturbations for large wavelength.Comment: 24 pages, Latex, no special macro

    Catalytic reaction between adsorbed oxygen and hydrogen on Rh(111)

    Get PDF
    Abstract unavailable

    Dark matter halo response to the disk growth

    Get PDF
    We consider the sensitivity of the circular-orbit adiabatic contraction approximation to the baryon condensation rate and the orbital structure of dark matter halos in the Λ\LambdaCDM paradigm. Using one-dimensional hydrodynamic simulations including the dark matter halo mass accretion history and gas cooling, we demonstrate that the adiabatic approximation is approximately valid even though halos and disks may assemble simultaneously. We further demonstrate the validity of the simple approximation for Λ\LambdaCDM halos with isotropic velocity distributions using three-dimensional N-body simulations. This result is easily understood: an isotropic velocity distribution in a cuspy halo requires more circular orbits than radial orbits. Conversely, the approximation is poor in the extreme case of a radial orbit halo. It overestimates the response a core dark matter halo, where radial orbit fraction is larger. Because no astronomically relevant models are dominated by low-angular momentum orbits in the vicinity of the disk and the growth time scale is never shorter than a dynamical time, we conclude that the adiabatic contraction approximation is useful in modeling the response of dark matter halos to the growth of a disk.Comment: 7 pages, 6 figures, accepted for publication in MNRA

    The Rotating Mass Matrix, the Strong CP Problem and Higgs Decay

    Full text link
    We investigate a recent solution to the strong CP problem, obtaining a theta-angle of order unity, and show that a smooth trajectory of the massive eigenvector of a rank-one rotating mass matrix is consistent with the experimental data for both fermion masses and mixing angles (except for the masses of the lightest quarks). Using this trajectory we study Higgs decay and find suppression of Γ(H→ccˉ)\Gamma(H\to c\bar{c}) compared to the standard model predictions for a range of Higgs masses. We also give limits for flavour violating decays, including a relatively large branching ratio for the τ−μ+\tau^-\mu^+ mode.Comment: 15 pages, 6 figures; improvements to introduction and preliminarie
    • …
    corecore