914 research outputs found

    Photon shield for atomic hydrogen plasma sources

    Get PDF

    The Rydberg-Atom-Cavity Axion Search

    Get PDF
    We report on the present progress in development of the dark matter axion search experiment with Rydberg-atom-cavity detectors in Kyoto, CARRACK I and CARRACK II. The axion search has been performed with CARRACK I in the 8 % mass range around 10μeV 10 \mu {\rm eV} , and CARRACK II is now ready for the search in the wide range 2μeV−50μeV 2 \mu {\rm eV} - 50 \mu {\rm eV} . We have also developed quantum theoretical calculations on the axion-photon-atom system in the resonant cavity in order to estimate precisely the detection sensitivity for the axion signal. Some essential features on the axion-photon-atom interaction are clarified, which provide the optimum experimental setup for the axion search.Comment: 8 pages, 2 figures, Invited talk presented at the Dark2000, Heidelberg, Germany,10-15 July, 200

    Emergent Gauge Fields in Holographic Superconductors

    Full text link
    Holographic superconductors have been studied so far in the absence of dynamical electromagnetic fields, namely in the limit in which they coincide with holographic superfluids. It is possible, however, to introduce dynamical gauge fields if a Neumann-type boundary condition is imposed on the AdS-boundary. In 3+1 dimensions, the dual theory is a 2+1 dimensional CFT whose spectrum contains a massless gauge field, signaling the emergence of a gauge symmetry. We study the impact of a dynamical gauge field in vortex configurations where it is known to significantly affect the energetics and phase transitions. We calculate the critical magnetic fields H_c1 and H_c2, obtaining that holographic superconductors are of Type II (H_c1 < H_c2). We extend the study to 4+1 dimensions where the gauge field does not appear as an emergent phenomena, but can be introduced, by a proper renormalization, as an external dynamical field. We also compare our predictions with those arising from a Ginzburg-Landau theory and identify the generic properties of Abrikosov vortices in holographic models.Comment: 19 pages, 14 figures, few comments added, version published in JHE

    P-odd and CP-odd Four-Quark Contributions to Neutron EDM

    Full text link
    In a class of beyond-standard-model theories, CP-odd observables, such as the neutron electric dipole moment, receive significant contributions from flavor-neutral P-odd and CP-odd four-quark operators. However, considerable uncertainties exist in the hadronic matrix elements of these operators strongly affecting the experimental constraints on CP-violating parameters in the theories. Here we study their hadronic matrix elements in combined chiral perturbation theory and nucleon models. We first classify the operators in chiral representations and present the leading-order QCD evolutions. We then match the four-quark operators to the corresponding ones in chiral hadronic theory, finding symmetry relations among the matrix elements. Although this makes lattice QCD calculations feasible, we choose to estimate the non-perturbative matching coefficients in simple quark models. We finally compare the results for the neutron electric dipole moment and P-odd and CP-odd pion-nucleon couplings with the previous studies using naive factorization and QCD sum rules. Our study shall provide valuable insights on the present hadronic physics uncertainties in these observables.Comment: 40 pages, 7 figures. This is the final version. A discussion of the uncertainty of the calculation is adde

    Primordial Black Holes: sirens of the early Universe

    Full text link
    Primordial Black Holes (PBHs) are, typically light, black holes which can form in the early Universe. There are a number of formation mechanisms, including the collapse of large density perturbations, cosmic string loops and bubble collisions. The number of PBHs formed is tightly constrained by the consequences of their evaporation and their lensing and dynamical effects. Therefore PBHs are a powerful probe of the physics of the early Universe, in particular models of inflation. They are also a potential cold dark matter candidate.Comment: 21 pages. To be published in "Quantum Aspects of Black Holes", ed. X. Calmet (Springer, 2014

    Muon conversion to electron in nuclei in type-I seesaw models

    Full text link
    We compute the muon to electron conversion in the type-I seesaw model, as a function of the right-handed neutrino mixings and masses. The results are compared with previous computations in the literature. We determine the definite predictions resulting for the ratios between the muon to electron conversion rate for a given nucleus and the rate of two other processes which also involve a mu-e flavour transition: mu -> e gamma and mu -> eee. For a quasi-degenerate mass spectrum of right-handed neutrino masses -which is the most natural scenario leading to observable rates- those ratios depend only on the seesaw mass scale, offering a quite interesting testing ground. In the case of sterile neutrinos heavier than the electroweak scale, these ratios vanish typically for a mass scale of order a few TeV. Furthermore, the analysis performed here is also valid down to very light masses. It turns out that planned mu -> e conversion experiments would be sensitive to masses as low as 2 MeV. Taking into account other experimental constraints, we show that future mu -> e conversion experiments will be fully relevant to detect or constrain sterile neutrino scenarios in the 2 GeV-1000 TeV mass range.Comment: 32 pages 14 figures, references added and some minor precisions; results unchange

    Stochastic Gravity: Theory and Applications

    Get PDF
    Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel. In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime, compute the two-point correlation functions of these perturbations and prove that Minkowski spacetime is a stable solution of semiclassical gravity. Second, we discuss structure formation from the stochastic gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in the gravitational background of a black hole and describe the metric fluctuations near the event horizon of an evaporating black holeComment: 100 pages, no figures; an update of the 2003 review in Living Reviews in Relativity gr-qc/0307032 ; it includes new sections on the Validity of Semiclassical Gravity, the Stability of Minkowski Spacetime, and the Metric Fluctuations of an Evaporating Black Hol

    Charged-Lepton Flavour Physics

    Full text link
    This writeup of a talk at the 2011 Lepton-Photon symposium in Mumbai, India, summarises recent results in the charged-lepton flavour sector. I review searches for charged-lepton flavour violation, lepton electric dipole moments and flavour-conserving CP violation. I also discuss recent progress in tau-lepton physics and in the Standard Model prediction of the muon anomalous magnetic moment.Comment: Presented at Lepton-Photon 2011, Mumbai, India; 23 pages, 14 figure
    • …
    corecore