354 research outputs found

    Cosmography: Cosmology without the Einstein equations

    Full text link
    How much of modern cosmology is really cosmography? How much of modern cosmology is independent of the Einstein equations? (Independent of the Friedmann equations?) These questions are becoming increasingly germane -- as the models cosmologists use for the stress-energy content of the universe become increasingly baroque, it behoves us to step back a little and carefully disentangle cosmological kinematics from cosmological dynamics. The use of basic symmetry principles (such as the cosmological principle) permits us to do a considerable amount, without ever having to address the vexatious issues of just how much "dark energy", "dark matter", "quintessence", and/or "phantom matter" is needed in order to satisfy the Einstein equations. This is the sub-sector of cosmology that Weinberg refers to as "cosmography", and in this article I will explore the extent to which cosmography is sufficient for analyzing the Hubble law and so describing many of the features of the universe around us.Comment: 7 pages; uses iopart.cls setstack.sty. Based on a talk presented at ACRGR4, the 4th Australasian Conference on General Relativity and Gravitation, Monash University, Melbourne, January 2004. To appear in the proceedings, in General Relativity and Gravitatio

    Weisskopf-Wigner Decay Theory for the Energy-Driven Stochastic Schr\"odinger Equation

    Get PDF
    We generalize the Weisskopf-Wigner theory for the line shape and transition rates of decaying states to the case of the energy-driven stochastic Schr\"odinger equation that has been used as a phenomenology for state vector reduction. Within the standard approximations used in the Weisskopf-Wigner analysis, and assuming that the perturbing potential inducing the decay has vanishing matrix elements within the degenerate manifold containing the decaying state, the stochastic Schr\"odinger equation linearizes. Solving the linearized equations, we find no change from the standard analysis in the line shape or the transition rate per unit time. The only effect of the stochastic terms is to alter the early time transient behavior of the decay, in a way that eliminates the quantum Zeno effect. We apply our results to estimate experimental bounds on the parameter governing the stochastic effects.Comment: 29 pages in RevTeX, Added Note, references adde

    Master Functional And Proper Formalism For Quantum Gauge Field Theory

    Full text link
    We develop a general field-covariant approach to quantum gauge theories. Extending the usual set of integrated fields and external sources to "proper" fields and sources, which include partners of the composite fields, we define the master functional Omega, which collects one-particle irreducible diagrams and upgrades the usual Gamma-functional in several respects. The functional Omega is determined from its classical limit applying the usual diagrammatic rules to the proper fields. Moreover, it behaves as a scalar under the most general perturbative field redefinitions, which can be expressed as linear transformations of the proper fields. We extend the Batalin-Vilkovisky formalism and the master equation. The master functional satisfies the extended master equation and behaves as a scalar under canonical transformations. The most general perturbative field redefinitions and changes of gauge-fixing can be encoded in proper canonical transformations, which are linear and do not mix integrated fields and external sources. Therefore, they can be applied as true changes of variables in the functional integral, instead of mere replacements of integrands. This property overcomes a major difficulty of the functional Gamma. Finally, the new approach allows us to prove the renormalizability of gauge theories in a general field-covariant setting. We generalize known cohomological theorems to the master functional and show that when there are no gauge anomalies all divergences can be subtracted by means of parameter redefinitions and proper canonical transformations.Comment: 32 pages; v2: minor changes and proof corrections, EPJ

    Large-scale collective motion of RFGC galaxies in curved space-time

    Full text link
    We consider large-scale collective motion of flat edge-on spiral galaxies from the Revised Flat Galaxy Catalogue (RFGC) taking into account the curvature of space-time in the Local Universe at the scale 100 Mpc/h. We analyse how the relativistic model of collective motion should be modified to provide the best possible values of parameters, the effects that impact these parameters and ways to mitigate them. Evolution of galactic diameters, selection effects, and difference between isophotal and angular diameter distances are inadequate to explain this impact. At the same time, measurement error in HI line widths and angular diameters can easily provide such an impact. This is illustrated in a toy model, which allows analytical consideration, and then in the full model using Monte Carlo simulations. The resulting velocity field is very close to that provided by the non-relativistic model of motion. The obtained bulk flow velocity is consistent with {\Lambda}CDM cosmology.Comment: 10 pages, 3 figures, 2 table

    On the pion electroproduction amplitude

    Full text link
    We analyze amplitudes for the pion electroproduction on proton derived from Lagrangians based on the local chiral SU(2) x SU(2) symmetries. We show that such amplitudes do contain information on the nucleon axial form factor F_A in both soft and hard pion regimes. This result invalidates recent Haberzettl's claim that the pion electroproduction at threshold cannot be used to extract any information regarding F_A.Comment: 14 pages, 6 figures, revised version, accepted for publication in Phys. Rev.

    Dilaton as the Higgs boson

    Full text link
    We propose a model where the role of the electroweak Higgs field is played by the dilaton. The model contains terms which explicitly violate gauge invariance, however it is shown that this violation is fictitious, so that the model is a consistent low energy effective theory. In the simplest version of the idea the resulting low energy effective theory is the same as the top mode standard model.Comment: 6 pages, v2 with expanded discussio

    Two- and Three-Point Functions in the Extended NJL Model

    Full text link
    The two-point functions in generalized Nambu--Jona-Lasinio models are calculated to all orders in momenta and quark masses to leading order in 1/Nc1/N_c. The use of Ward identities and the heat-kernel expansion allows for a large degree of regularization independence. We also show how this approach works to the same order for three-point functions on the example of the vector-pseudoscalar-pseudoscalar three-point function. The inclusion of the chiral anomaly effects at this level is shown by calculating the pseudoscalar-vector-vector three-point function to the same order. Finally we comment on how (vector-)meson-dominance comes out in the presence of explicit chiral symmetry breaking in both the anomalous and the non-anomalous sectors.Comment: Latex, 42 pages, 3 latex figures, 7 postscript figures included, NORDITA 94/11 N,P. Improvement in the regularization procedure for the PVV three point functio

    Spontaneous breaking of Lorentz invariance, black holes and perpetuum mobile of the 2nd kind

    Full text link
    We study the effect of spontaneous breaking of Lorentz invariance on black hole thermodynamics. We consider a scenario where Lorentz symmetry breaking manifests itself by the difference of maximal velocities attainable by particles of different species in a preferred reference frame. The Lorentz breaking sector is represented by the ghost condensate. We find that the notions of black hole entropy and temperature loose their universal meaning. In particular, the standard derivation of the Hawking radiation yields that a black hole does emit thermal radiation in any given particle species, but with temperature depending on the maximal attainable velocity of this species. We demonstrate that this property implies violation of the second law of thermodynamics, and hence, allows construction of a perpetuum mobile of the 2nd kind. We discuss possible interpretation of these results.Comment: 13 pages; references adde

    Diluting Cosmological Constant In Infinite Volume Extra Dimensions

    Get PDF
    We argue that the cosmological constant problem can be solved in a braneworld model with infinite-volume extra dimensions, avoiding no-go arguments applicable to theories that are four-dimensional in the infrared. Gravity on the brane becomes higher-dimensional at super-Hubble distances, which entails that the relation between the acceleration rate and vacuum energy density flips upside down compared to the conventional one. The acceleration rate decreases with increasing the energy density. The experimentally acceptable rate is obtained for the energy density larger than (1 TeV)4^4. The results are stable under quantum corrections because supersymmetry is broken only on the brane and stays exact in the bulk of infinite volume extra space. Consistency of 4D gravity and cosmology on the brane requires the quantum gravity scale to be around 10310^{-3} eV. Testable predictions emerging within this approach are: (i) simultaneous modifications of gravity at sub-millimeter and the Hubble scales; (ii) Hagedorn-type saturation in TeV energy collisions due to the Regge spectrum with the spacing equal to 10310^{-3} eV.Comment: 36 pages, 1 eps fig; 4 refs and comment adde

    Obtaining the Gauge Invariant Kinetic Term for a SU(n)U_U x SU(m)V_V Lagrangian

    Full text link
    We propose a generalized way to formally obtain the gauge invariance of the kinetic part of a field Lagrangian over which a gauge transformation ruled by an SU(n)USU(m)VSU(n)_{U} \otimes SU(m)_{V} coupling symmetry is applied. As an illustrative example, we employ such a formal construction for reproducing the standard model Lagrangian. This generalized formulation is supposed to contribute for initiating the study of gauge transformation applied to generalized SU(n)USU(m)VSU(n)_{U} \otimes SU(m)_{V} symmetries as well as for complementing an introductory study of the standard model of elementary particles.Comment: 6 page
    corecore