170 research outputs found

    Demand-Driven Scheduling of Movies in a Multiplex

    Get PDF
    This paper describes a model that generates weekly movie schedules in a multiplex movie theater. A movie schedule specifies within each day of the week, on which screen(s) different movies will be played, and at which time(s). The model consists of two parts: (i) conditional forecasts of the number of visitors per show for any possible starting time; and (ii) an optimization procedure that quickly finds an almost optimal schedule (which can be demonstrated to be close to the optimal schedule). To generate this schedule we formulate the so-called movie scheduling problem as a generalized set partitioning problem. The latter is solved with an algorithm based on column generation techniques. We have applied this combined demand forecasting /schedule optimization procedure to a multiplex in Amsterdam where we supported the scheduling of fourteen movie weeks. The proposed model not 2 only makes movie scheduling easier and less time consuming, but also generates schedules that would attract more visitors than the current ‘intuition-based’ schedules.Integer programming;Column generation;Demand forecasting;Optimization of movie schedules

    Demand-driven scheduling of movies in a multiplex

    Get PDF
    This paper describes a model that generates weekly movie schedules in a multiplex movie theater. A movie schedule specifies within each day of the week, on which screen(s) different movies will be played, and at which time(s). The model consists of two parts: (i) conditional forecasts of the number of visitors per show for any possible starting time; and (ii) an optimization procedure that quickly finds an almost optimal schedule (which can be demonstrated to be close to the optimal schedule). To generate this schedule we formulate the so-called movie scheduling problem as a generalized set partitioning problem. The latter is solved with an algorithm based on column generation techniques. We have applied this combined demand forecasting /schedule optimization procedure to a multiplex in Amsterdam where we supported the scheduling of fourteen movie weeks. The proposed model not only makes movie scheduling easier and less time consuming, but also generates schedules that would attract more visitors than the current ‘intuition-based’ schedules.column generation;integer programming;demand forecasting;optimization of movie schedules

    Globally Distributed R&D Work in a Marketing Management Support Systems (MMSS) Environment

    Get PDF
    Globalisation, liberalization and rapid technological developments have been changing business environments drastically in the recent decades. These trends are increasingly exposing businesses to market competition and thus intensifying competition. In such an environment, the role of marketing management support systems (MMSS) becomes exceedingly important for the long-term growth of an organisations marketing expertise and success. In this paper, we discuss the evolution of a globally distributed R&D project spanning three continents in developing an MMSS for the motion picture industry. We first provide the conceptual background of the MMSS and knowledge management systems relevant for our work. We then provide a detailed case study of our MMSS implementation. We specifically focus on the following elements of our work: globally distributed R&D efforts, knowledge elements, and fit between demand and supply sides of MMSS. We conclude with a discussion of implications for future research in this area

    πK\pi K Scattering in Three Flavour ChPT

    Full text link
    We present the scattering lengths for the πK\pi K processes in the three flavour Chiral Perturbation Theory (ChPT) framework at next-to-next-to-leading order (NNLO). The calculation has been performed analytically but we only include analytical results for the dependence on the low-energy constants (LECs) at NNLO due to the size of the expressions. These results, together with resonance estimates of the NNLO LECs are used to obtain constraints on the Zweig rule suppressed LECs at NLO, L4rL_4^r and L6rL_6^r. Contrary to expectations from NLO order calculations we find them to be compatible with zero. We do a preliminary study of combining the results from ππ\pi\pi scattering, πK\pi K scattering and the scalar form-factors and find only a marginal compatibility with all experimental/dispersive input data.Comment: 23 page

    Demand-Driven Scheduling of Movies in a Multiplex

    Get PDF
    This paper describes a model that generates weekly movie schedules in a multiplex movie theater. A movie schedule specifies within each day of the week, on which screen(s) different movies will be played, and at which time(s). The model consists of two parts: (i) conditional forecasts of the number of visitors per show for any possible starting time; and (ii) an optimization procedure that quickly finds an almost optimal schedule (which can be demonstrated to be close to the optimal schedule). To generate this schedule we formulate the so-called movie scheduling problem as a generalized set partitioning problem. The latter is solved with an algorithm based on column generation techniques. We have applied this combined demand forecasting /schedule optimization procedure to a multiplex in Amsterdam where we supported the scheduling of fourteen movie weeks. The proposed model not 2 only makes movie scheduling easier and less time consuming, but also generates schedules that would attract more visitors than the current ‘intuition-based’ schedules

    The condensate for two dynamical chirally improved quarks in QCD

    Get PDF
    We compare the eigenvalue spectra of the Dirac operator from a simulation with two mass degenerate dynamical chirally improved fermions with Random Matrix Theory. Comparisons with distribution of k-th eigenvalues (k=1,2) in fixed topological sectors (nu=0,1) are carried out using the Kolmogorov-Smirnov test. The eigenvalue distributions are well described by the RMT predictions. The match allows us to read off the quark condensate in the chiral limit directly. Correcting for finite size and renormalization we obtain a mean value of -(276 (11)(16) MeV)**3 in the MS-bar scheme.Comment: 8 pages, 2 figures, Final version. To be publishe

    I=3/2 KπK \pi Scattering in the Nonrelativisitic Quark Potential Model

    Full text link
    We study I=3/2I=3/2 elastic KπK\pi scattering to Born order using nonrelativistic quark wavefunctions in a constituent-exchange model. This channel is ideal for the study of nonresonant meson-meson scattering amplitudes since s-channel resonances do not contribute significantly. Standard quark model parameters yield good agreement with the measured S- and P-wave phase shifts and with PCAC calculations of the scattering length. The P-wave phase shift is especially interesting because it is nonzero solely due to SU(3)fSU(3)_f symmetry breaking effects, and is found to be in good agreement with experiment given conventional values for the strange and nonstrange constituent quark masses.Comment: 12 pages + 2 postscript figures, Revtex, MIT-CTP-210

    The Hadron Spectrum from Lattice QCD

    Full text link
    Determining the hadron spectrum and hadron properties beyond the ground states is a challenge in lattice QCD. Most of these results have been in the quenched approximation but now we are entering the dynamical era. I review some of the ideas and methods of the lattice approach, concentrating on a few examples and on results obtained for Chirally Improved (CI) fermions.Comment: 18 pages, 12 figures, 1 table; Notes based on a lecture at the Int. School of Nuclear Physics, 29th Course, 16-24. Sept. 2007, Erice/Sicily, "Quarks in Hadrons and Nuclei"; minor modification

    Chaotic scalar fields as models for dark energy

    Full text link
    We consider stochastically quantized self-interacting scalar fields as suitable models to generate dark energy in the universe. Second quantization effects lead to new and unexpected phenomena is the self interaction strength is strong. The stochastically quantized dynamics can degenerate to a chaotic dynamics conjugated to a Bernoulli shift in fictitious time, and the right amount of vacuum energy density can be generated without fine tuning. It is numerically observed that the scalar field dynamics distinguishes fundamental parameters such as the electroweak and strong coupling constants as corresponding to local minima in the dark energy landscape. Chaotic fields can offer possible solutions to the cosmological coincidence problem, as well as to the problem of uniqueness of vacua.Comment: 30 pages, 3 figures. Replaced by final version accepted by Phys. Rev.

    Generation of Bianchi type V cosmological models with varying Λ\Lambda-term

    Full text link
    Bianchi type V perfect fluid cosmological models are investigated with cosmological term Λ\Lambda varying with time. Using a generation technique (Camci {\it et al.}, 2001), it is shown that the Einstein's field equations are solvable for any arbitrary cosmic scale function. Solutions for particular forms of cosmic scale functions are also obtained. The cosmological constant is found to be decreasing function of time, which is supported by results from recent type Ia supernovae observations. Some physical aspects of the models are also discussed.Comment: 16 pages, 3 figures, submitted to CJ
    corecore