118 research outputs found

    Design and performance of cost-effective ultra-high performance concrete for prefabricated elements

    Get PDF
    This study presented in this thesis aims to: (1) develop a mixture design methodology for cost-effective ultra-high-performance concrete (UHPC) incorporating high volume of supplementary cementitious materials and conventional concrete and masonry sands; (2) developed UHPC with adapted rheology incorporating lightweight sand, hybrid fibers, and nanomaterials with improved properties; (3) design prefabricated UHPC panels with fiber-reinforced polymers (FRP) for enhanced flexural properties of stay-in-place panels made with optimized UHPC; and (4) explore potential applications of such UHPC elements. The proposed design methodology produced UHPC mixtures with 28-days compressive strengths higher than 125 and 168 MPa under standard water curing and 1-d steam curing at 90 ⁰C. To further improve the properties, internal curing using pre-saturated lightweight sand, rheology control of the suspending mortar before steel fibers addition, and reinforcement of hybrid fibers and carbon nanomaterials, were employed. The outcome indicated: (a) the optimum replacement ratio of lightweight sand to river sand in the UHPC was 25% to increase mechanical properties and reduce shrinkage; (b) at steel fiber content of 2%, the optimal plastic viscosity of the suspending mortar was 53 ± 3 Pa·s to secure favorable fiber distribution and enhance flexural properties of the UHPC; (c) through use of hybrid steel fibers, the flexural strength, tensile strength, and autogenous shrinkage of UHPC can increase by up to 20%, 25%, and reduced by 40%, respectively; (d) adding nanomaterials at a volume fraction of 0.3% increased the tensile strength and energy absorption capacity of the UHPC by 55% and 185%, respectively. In the end, novel applications of the developed reinforced and non-reinforced UHPC-FRP systems were explored for various applications --Abstract, page iii

    Evaluation of a nanoparticle drug delivery vehicle in medulloblastoma and organotypic brain cell cultures

    Get PDF
    It has been widely reported that cell culture dimension and microenvironment influence cell proliferation, differentiation, and gene expression, which lead to different interactions between drug delivery systems and cells. The development in evaluation of drug delivery systems has reached the stage where investigations are now concentrating on intracellular uptake and subcellular localization of drug delivery systems.This thesis investigates the use of three-dimensional (3-D) tissue culture models to study how nanoparticles (NPs) may behave in vivo. Poly (glycerol-adipate) (PGA) NPs can degrade into glycerol and adipate, which are not having toxic and anyundesirable local or systemic effects in the host. Following on the initial physicochemical characterization of PGA NPs loaded with drug and fluorescent dyes, investigations moved on to the biological studies of NPs in various cell culture model, e.g. monolayer culture, 3-D culture models, and brain tumour invasion model. Particle size, surface charge, and hydrophobicity are important features affecting the amount of particles taken up by cells and intracellular localisation of particles. Thus, the physicochemical properties of drug and fluorescent dye loaded PGA NPs were assessed by Photon Correlation Spectroscopy, Laser Doppler Anemometry, and drug/fluorescent dye loading studies. These studies indicated that physicochemical properties of drug, fluorescent dyes and PGA polymer could influence drug /fluorescent dye loading, which results in different particle size and surface charge of PGA NPs. Quantitative and qualitative investigations into the influence of cell culture dimension on uptake of NPs by cells, both by confocal fluorescence microscopy and flow cytometry, revealed that DAOY cells took up NPs more effectively when in 3-D spherical aggregate culture than in 2-D monolayer culture while uptake of NPs by normal brain cells was lower in 3-D cell culture than that seen in 2-D monolayer culture. This resulted in intracellular fluorescence intensity about 6 times higher in DAOY aggregates than normal brain cell aggregates while in monolayer culture mixed brain cells took up 2 times as many NP as the DAOY cells. The results from studies of NPs migrating through aggregates and tissue slices also indicated that penetration ofNPs in 3-D culture models was affected by the structure of the interstitial compartment and composition of extracellular matrix. Microscopic investigation of the histology of a co-culture invasion model of DAOY aggregates and a organotypic brain slice confirmed that DAOY cells massively invaded into cerebellum slices after a 4-day co-culture while the invasion of DAOY cells were limited within cerebral cortex slices even after a 6-day co-culture. Selective uptake of NPs by host cells and brain tumour cells were also assessed in this 3-D brain tumour invasion model. It showed that most NPs were taken up by DAOY cells instead of brain cells

    Evaluation of a nanoparticle drug delivery vehicle in medulloblastoma and organotypic brain cell cultures

    Get PDF
    It has been widely reported that cell culture dimension and microenvironment influence cell proliferation, differentiation, and gene expression, which lead to different interactions between drug delivery systems and cells. The development in evaluation of drug delivery systems has reached the stage where investigations are now concentrating on intracellular uptake and subcellular localization of drug delivery systems.This thesis investigates the use of three-dimensional (3-D) tissue culture models to study how nanoparticles (NPs) may behave in vivo. Poly (glycerol-adipate) (PGA) NPs can degrade into glycerol and adipate, which are not having toxic and anyundesirable local or systemic effects in the host. Following on the initial physicochemical characterization of PGA NPs loaded with drug and fluorescent dyes, investigations moved on to the biological studies of NPs in various cell culture model, e.g. monolayer culture, 3-D culture models, and brain tumour invasion model. Particle size, surface charge, and hydrophobicity are important features affecting the amount of particles taken up by cells and intracellular localisation of particles. Thus, the physicochemical properties of drug and fluorescent dye loaded PGA NPs were assessed by Photon Correlation Spectroscopy, Laser Doppler Anemometry, and drug/fluorescent dye loading studies. These studies indicated that physicochemical properties of drug, fluorescent dyes and PGA polymer could influence drug /fluorescent dye loading, which results in different particle size and surface charge of PGA NPs. Quantitative and qualitative investigations into the influence of cell culture dimension on uptake of NPs by cells, both by confocal fluorescence microscopy and flow cytometry, revealed that DAOY cells took up NPs more effectively when in 3-D spherical aggregate culture than in 2-D monolayer culture while uptake of NPs by normal brain cells was lower in 3-D cell culture than that seen in 2-D monolayer culture. This resulted in intracellular fluorescence intensity about 6 times higher in DAOY aggregates than normal brain cell aggregates while in monolayer culture mixed brain cells took up 2 times as many NP as the DAOY cells. The results from studies of NPs migrating through aggregates and tissue slices also indicated that penetration ofNPs in 3-D culture models was affected by the structure of the interstitial compartment and composition of extracellular matrix. Microscopic investigation of the histology of a co-culture invasion model of DAOY aggregates and a organotypic brain slice confirmed that DAOY cells massively invaded into cerebellum slices after a 4-day co-culture while the invasion of DAOY cells were limited within cerebral cortex slices even after a 6-day co-culture. Selective uptake of NPs by host cells and brain tumour cells were also assessed in this 3-D brain tumour invasion model. It showed that most NPs were taken up by DAOY cells instead of brain cells

    Preparation and in vivo evaluation of gel-based nasal delivery system for risperidone

    Get PDF
    The aim of this study was to prepare a nasal gel of risperidone and to investigate the pharmacokinetics and relative bioavailability of the drug in rats. Compared with oral dosing, the risperidone nasal gel exhibited very fast absorption and high bioavailability. Maximal plasma concentration (cmax ) and the time to reach cmax (tmax) were 15.2 µg mL–1 and 5min for the nasal gel, 3.6 µg mL–1and 30 min for the oral drug suspension, respectively. Pharmacokinetic parameters such as tmax, cmax and AUC between oral and nasal routes were significantly different (p < 0.01). Relative bioavailability of the drug nasal preparation to the oral suspension was up to 1600.0%. Further, the in vitro effect of the risperidone nasal gel on nasal mucociliary movement was also investigated using a toad palate model. The risperidone nasal formulation showed mild ciliotoxicity, but the adverse effect was temporary and reversible

    Cement-Based Materials With Solid-Gel Phase Change Materials For Improving Energy Efficiency Of Building Envelope

    Get PDF
    This paper evaluated the cement-based materials incorporated with novel solid-gel phase change materials (PCMs) for improving the energy efficiency of building envelopes. This novel PCM is form-stable, which will not leak as solid-liquid PCMs do and not need encapsulation, and it features high energy-storage capacity. Experimental results showed that the thermal properties of cement-based materials were improved as the increase of PCM content. A 30% replacement of sand by volume with PCM can increase the latent heat of the mixture from around 0 to 7 J/g and decrease the thermal conductivity of PCM mortar based on the generalized self-consistent (GSC) model by about 20%. However, the workability and mechanical properties were compromised. The simulation results indicated that 30% PCM-incorporated walls can contribute to 5% energy saving for cooling in a whole year and 12% reduction in peak cooling load compared with the reference without PCM. The proposed PCM composite offers a promising avenue to achieve energy-efficient building envelopes

    Characterization of two novel HIV-1 second-generation recombinants (CRF01_AE/CRF07_BC) identified in Hebei Province, China

    Get PDF
    IntroductionThe unique recombinant forms (URFs) of HIV-1 consist of a mixture of subtypes, and each URF has a unique breakpoint. In this study, we identified the near fulllength genome (NFLG) sequences of two novel HIV-1 URFs (Sample ID: BDD034A and BDL060) isolated during HIV-1 molecular surveillance in 2022 in Baoding city, Hebei Province, China.MethodsThe two sequences were aligned with subtype reference sequences and CRFs from China using MAFFT v7.0, and the alignments were adjusted manually using BioEdit (v7.2.5.0). Phylogenetic and subregion trees were constructed using MEGA11 with the neighbor-joining (N-J) method. Recombination breakpoints were identified by SimPlot (v3.5.1) based on Bootscan analyses.ResultsRecombinant breakpoint analysis revealed that the NFLGs of BDD034A and BDL060 were composed of CRF01_AE and CRF07_BC, containing seven segments, respectively. For BDD034A, three CRF01_AE fragments were inserted into the CRF07_BC main framework, whereas for BDL060, three CRF07_BC fragments were inserted into the CRF01_AE main framework.DiscussionThe emergence of the CRF01_AE/CRF07_BC recombinant strains indicates that HIV-1 co-infection is common. The increasing genetic complexity of the HIV-1 epidemic in China warrants continued investigation

    Pharmacokinetics, distribution, metabolism, and excretion of body-protective compound 157, a potential drug for treating various wounds, in rats and dogs

    Get PDF
    Body-protective compound (BPC) 157 demonstrates protective effects against damage to various organs and tissues. For future clinical applications, we had previously established a solid-phase synthesis process for BPC157, verified its biological activity in different wound models, and completed preclinical safety evaluations. This study aimed to investigate the pharmacokinetics, excretion, metabolism, and distribution profiles of BPC157. After a single intravenous (IV) administration, single intramuscular (IM) administrations at three doses in successive increments along with repeated IM administrations, the elimination half-life (t1/2) of prototype BPC157 was less than 30 min, and BPC157 showed linear pharmacokinetic characteristics in rats and beagle dogs at all doses. The mean absolute bioavailability of BPC157 following IM injection was approximately 14%–19% in rats and 45%–51% in beagle dogs. Using [3H]-labeled BPC157 and radioactivity examination, we proved that the main excretory pathways of BPC157 involved urine and bile. [3H]BPC157 was rapidly metabolized into a variety of small peptide fragments in vivo, thus forming single amino acids that entered normal amino acid metabolism and excretion pathways. In conclusion, this study provides the first analysis of the pharmacokinetics of BPC157, which will be helpful for its translation in the clinic

    Significant decrease of maternal mitochondria carryover using optimized spindle-chromosomal complex transfer.

    Get PDF
    Mutations in mitochondrial DNA (mtDNA) contribute to a variety of serious multi-organ human diseases, which are strictly inherited from the maternal germline. However, there is currently no curative treatment. Attention has been focused on preventing the transmission of mitochondrial diseases through mitochondrial replacement (MR) therapy, but levels of mutant mtDNA can often unexpectedly undergo significant changes known as mitochondrial genetic drift. Here, we proposed a novel strategy to perform spindle-chromosomal complex transfer (SCCT) with maximal residue removal (MRR) in metaphase II (MII) oocytes, thus hopefully eliminated the transmission of mtDNA diseases. With the MRR procedure, we initially investigated the proportions of mtDNA copy numbers in isolated karyoplasts to those of individual oocytes. Spindle-chromosomal morphology and copy number variation (CNV) analysis also confirmed the safety of this method. Then, we reconstructed oocytes by MRR-SCCT, which well developed to blastocysts with minimal mtDNA residue and normal chromosomal copy numbers. Meanwhile, we optimized the manipulation order between intracytoplasmic sperm injection (ICSI) and SCC transfer and concluded that ICSI-then-transfer was conducive to avoid premature activation of reconstructed oocytes in favor of normal fertilization. Offspring of mice generated by embryos transplantation in vivo and embryonic stem cells derivation further presented evidences for competitive development competence and stable mtDNA carryover without genetic drift. Importantly, we also successfully accomplished SCCT in human MII oocytes resulting in tiny mtDNA residue and excellent embryo development through MRR manipulation. Taken together, our preclinical mouse and human models of the MRR-SCCT strategy not only demonstrated efficient residue removal but also high compatibility with normal embryo development, thus could potentially be served as a feasible clinical treatment to prevent the transmission of inherited mtDNA diseases
    corecore