289 research outputs found

    Shanghai VLBI Correlator

    Get PDF
    This report summarizes the activities of the Shanghai VLBI Correlator during 2012

    Application of numerical inverse method in calculation of composition-dependent interdiffusion coefficients in finite diffusion couples

    Get PDF
    The previously developed numerical inverse method was applied to determine the composition-dependent interdiffusion coefficients in single-phase finite diffusion couples. The numerical inverse method was first validated in a fictitious binary finite diffusion couple by pre-assuming four standard sets of interdiffusion coefficients. After that, the numerical inverse method was then adopted in a ternary Al-Cu-Ni finite diffusion couple. Based on the measured composition profiles, the ternary interdiffusion coefficients along the entire diffusion path of the target ternary diffusion couple were obtained by using the numerical inverse approach. The comprehensive comparisons between the computations and the experiments indicate that the numerical inverse method is also applicable to high-throughput determination of the composition-dependent interdiffusion coefficients in finite diffusion couples

    Bipartite Consensus for a Class of Nonlinear Multi-agent Systems Under Switching Topologies:A Disturbance Observer-Based Approach

    Get PDF
    This paper considers the leader-following bipartite consensus for a class of nonlinear multi-agent systems (MASs) subject to exogenous disturbances under directed fixed and switching topologies, respectively. Firstly, two new output feedback control protocols involving signs of link weights are introduced based on relative output measurements of neighboring agents. In order to estimate the disturbances produced by an exogenous system, a disturbance observer-based approach is developed. Then, sufficient conditions for leader-following bipartite consensus with directed fixed topologies are derived. Furthermore, by assuming that each switching topology contains a directed spanning tree, it is proved that the leader-following bipartite consensus can be realized with the designed output feedback control protocol if the dwell time is larger than a non-negative threshold. Finally, numerical simulations inspired by a real-world DC motors are provided to illustrate the effectiveness of the proposed controllers

    OpenGCD: Assisting Open World Recognition with Generalized Category Discovery

    Full text link
    A desirable open world recognition (OWR) system requires performing three tasks: (1) Open set recognition (OSR), i.e., classifying the known (classes seen during training) and rejecting the unknown (unseen//novel classes) online; (2) Grouping and labeling these unknown as novel known classes; (3) Incremental learning (IL), i.e., continual learning these novel classes and retaining the memory of old classes. Ideally, all of these steps should be automated. However, existing methods mostly assume that the second task is completely done manually. To bridge this gap, we propose OpenGCD that combines three key ideas to solve the above problems sequentially: (a) We score the origin of instances (unknown or specifically known) based on the uncertainty of the classifier's prediction; (b) For the first time, we introduce generalized category discovery (GCD) techniques in OWR to assist humans in grouping unlabeled data; (c) For the smooth execution of IL and GCD, we retain an equal number of informative exemplars for each class with diversity as the goal. Moreover, we present a new performance evaluation metric for GCD called harmonic clustering accuracy. Experiments on two standard classification benchmarks and a challenging dataset demonstrate that OpenGCD not only offers excellent compatibility but also substantially outperforms other baselines. Code: https://github.com/Fulin-Gao/OpenGCD

    A new partnership for an impactful future

    Full text link

    QR-CLIP: Introducing Explicit Open-World Knowledge for Location and Time Reasoning

    Full text link
    Daily images may convey abstract meanings that require us to memorize and infer profound information from them. To encourage such human-like reasoning, in this work, we teach machines to predict where and when it was taken rather than performing basic tasks like traditional segmentation or classification. Inspired by Horn's QR theory, we designed a novel QR-CLIP model consisting of two components: 1) the Quantity module first retrospects more open-world knowledge as the candidate language inputs; 2) the Relevance module carefully estimates vision and language cues and infers the location and time. Experiments show our QR-CLIP's effectiveness, and it outperforms the previous SOTA on each task by an average of about 10% and 130% relative lift in terms of location and time reasoning. This study lays a technical foundation for location and time reasoning and suggests that effectively introducing open-world knowledge is one of the panaceas for the tasks.Comment: Technical Report. Github: https://github.com/Shi-Wm/QR-CLI
    • …
    corecore