703 research outputs found

    Poincar\'e and sl(2) algebras of order 3

    Full text link
    In this paper we initiate a general classification for Lie algebras of order 3 and we give all Lie algebras of order 3 based on sl(2,C)\mathfrak{sl}(2,\mathbb C) and iso(1,3)\mathfrak{iso}(1,3) the Poincar\'e algebra in four-dimensions. We then set the basis of the theory of the deformations (in the Gerstenhaber sense) and contractions for Lie algebras of order 3.Comment: Title and presentation change

    Formal deformations, contractions and moduli spaces of Lie algebras

    Full text link
    Jump deformations and contractions of Lie algebras are inverse concepts, but the approaches to their computations are quite different. In this paper, we contrast the two approaches, showing how to compute jump deformations from the miniversal deformation of a Lie algebra, and thus arrive at the contractions. We also compute contractions directly. We use the moduli spaces of real 3-dimensional and complex 3 and 4-dimensional Lie algebras as models for explaining a deformation theory approach to computation of contractions.Comment: 27 page

    Expanding Lie (super)algebras through abelian semigroups

    Get PDF
    We propose an outgrowth of the expansion method introduced by de Azcarraga et al. [Nucl. Phys. B 662 (2003) 185]. The basic idea consists in considering the direct product between an abelian semigroup S and a Lie algebra g. General conditions under which relevant subalgebras can systematically be extracted from S \times g are given. We show how, for a particular choice of semigroup S, the known cases of expanded algebras can be reobtained, while new ones arise from different choices. Concrete examples, including the M algebra and a D'Auria-Fre-like Superalgebra, are considered. Finally, we find explicit, non-trace invariant tensors for these S-expanded algebras, which are essential ingredients in, e.g., the formulation of Supergravity theories in arbitrary space-time dimensions.Comment: 42 pages, 8 figures. v2: Improved figures, updated notation and terminolog

    Non-solvable contractions of semisimple Lie algebras in low dimension

    Get PDF
    The problem of non-solvable contractions of Lie algebras is analyzed. By means of a stability theorem, the problem is shown to be deeply related to the embeddings among semisimple Lie algebras and the resulting branching rules for representations. With this procedure, we determine all deformations of indecomposable Lie algebras having a nontrivial Levi decomposition onto semisimple Lie algebras of dimension n8n\leq 8, and obtain the non-solvable contractions of the latter class of algebras.Comment: 21 pages. 2 Tables, 2 figure

    Quasi-classical Lie algebras and their contractions

    Get PDF
    After classifying indecomposable quasi-classical Lie algebras in low dimension, and showing the existence of non-reductive stable quasi-classical Lie algebras, we focus on the problem of obtaining sufficient conditions for a quasi-classical Lie algebras to be the contraction of another quasi-classical algebra. It is illustrated how this allows to recover the Yang-Mills equations of a contraction by a limiting process, and how the contractions of an algebra may generate a parameterized families of Lagrangians for pairwise non-isomorphic Lie algebras.Comment: 17 pages, 2 Table

    Generalization of the Gell-Mann formula for sl(5, R) and su(5) algebras

    Full text link
    The so called Gell-Mann formula expresses the Lie algebra elements in terms of the corresponding Inonu-Wigner contracted ones. In the case of sl(n, R) and su(n) algebras contracted w.r.t. so(n) subalgebras, the Gell-Mann formula is generally not valid, and applies only in the cases of some algebra representations. A generalization of the Gell-Mann formula for sl(5,R) and su(5) algebras, that is valid for all representations, is obtained in a group manifold framework of the SO(5) and/or Spin(5) group

    Galilei invariant theories. I. Constructions of indecomposable finite-dimensional representations of the homogeneous Galilei group: directly and via contractions

    Full text link
    All indecomposable finite-dimensional representations of the homogeneous Galilei group which when restricted to the rotation subgroup are decomposed to spin 0, 1/2 and 1 representations are constructed and classified. These representations are also obtained via contractions of the corresponding representations of the Lorentz group. Finally the obtained representations are used to derive a general Pauli anomalous interaction term and Darwin and spin-orbit couplings of a Galilean particle interacting with an external electric field.Comment: 23 pages, 2 table

    Expansions of algebras and superalgebras and some applications

    Get PDF
    After reviewing the three well-known methods to obtain Lie algebras and superalgebras from given ones, namely, contractions, deformations and extensions, we describe a fourth method recently introduced, the expansion of Lie (super)algebras. Expanded (super)algebras have, in general, larger dimensions than the original algebra, but also include the Inonu-Wigner and generalized IW contractions as a particular case. As an example of a physical application of expansions, we discuss the relation between the possible underlying gauge symmetry of eleven-dimensional supergravity and the superalgebra osp(1|32).Comment: Invited lecture delivered at the 'Deformations and Contractions in Mathematics and Physics Workshop', 15-21 January 2006, Mathematisches Forschungsinstitut Oberwolfach, German
    corecore