99 research outputs found

    Switchable resolution in soft x-ray tomography of single cells.

    Get PDF
    The diversity of living cells, in both size and internal complexity, calls for imaging methods with adaptable spatial resolution. Soft x-ray tomography (SXT) is a three-dimensional imaging technique ideally suited to visualizing and quantifying the internal organization of single cells of varying sizes in a near-native state. The achievable resolution of the soft x-ray microscope is largely determined by the objective lens, but switching between objectives is extremely time-consuming and typically undertaken only during microscope maintenance procedures. Since the resolution of the optic is inversely proportional to the depth of focus, an optic capable of imaging the thickest cells is routinely selected. This unnecessarily limits the achievable resolution in smaller cells and eliminates the ability to obtain high-resolution images of regions of interest in larger cells. Here, we describe developments to overcome this shortfall and allow selection of microscope optics best suited to the specimen characteristics and data requirements. We demonstrate that switchable objective capability advances the flexibility of SXT to enable imaging cells ranging in size from bacteria to yeast and mammalian cells without physically modifying the microscope, and we demonstrate the use of this technology to image the same specimen with both optics

    Sub-nanosecond signal propagation in anisotropy engineered nanomagnetic logic chains

    Get PDF
    Energy efficient nanomagnetic logic (NML) computing architectures propagate and process binary information by relying on dipolar field coupling to reorient closely-spaced nanoscale magnets. Signal propagation in nanomagnet chains of various sizes, shapes, and magnetic orientations has been previously characterized by static magnetic imaging experiments with low-speed adiabatic operation; however the mechanisms which determine the final state and their reproducibility over millions of cycles in high-speed operation (sub-ns time scale) have yet to be experimentally investigated. Monitoring NML operation at its ultimate intrinsic speed reveals features undetectable by conventional static imaging including individual nanomagnetic switching events and systematic error nucleation during signal propagation. Here, we present a new study of NML operation in a high speed regime at fast repetition rates. We perform direct imaging of digital signal propagation in permalloy nanomagnet chains with varying degrees of shape-engineered biaxial anisotropy using full-field magnetic soft x-ray transmission microscopy after applying single nanosecond magnetic field pulses. Further, we use time-resolved magnetic photo-emission electron microscopy to evaluate the sub-nanosecond dipolar coupling signal propagation dynamics in optimized chains with 100 ps time resolution as they are cycled with nanosecond field pulses at a rate of 3 MHz. An intrinsic switching time of 100 ps per magnet is observed. These experiments, and accompanying macro-spin and micromagnetic simulations, reveal the underlying physics of NML architectures repetitively operated on nanosecond timescales and identify relevant engineering parameters to optimize performance and reliability.Comment: Main article (22 pages, 4 figures), Supplementary info (11 pages, 5 sections

    Disorder Operator and R\'enyi Entanglement Entropy of Symmetric Mass Generation

    Full text link
    In recent years a consensus has gradually been reached that the previously proposed deconfined quantum critical point (DQCP) for spin-1/2 systems, an archetypal example of quantum phase transition beyond the classic Landau's paradigm, actually does not correspond to a true unitary conformal field theory (CFT). In this work we carefully investigate another type of quantum phase transition supposedly beyond the similar classic paradigm, the so called ``symmetric mass generation" (SMG) transition proposed in recent years. We employ the sharp diagnosis including the scaling of disorder operator and R\'enyi entanglement entropy in large-scale lattice model quantum Monte Carlo simulations. Our results strongly suggest that the SMG transition is indeed an unconventional quantum phase transition and it should correspond to a true (2+1)d(2+1)d unitary CFT.Comment: 15 pages, 10 figure
    corecore