6 research outputs found

    Rubik's Optical Neural Networks: Multi-task Learning with Physics-aware Rotation Architecture

    No full text
    Recently, there are increasing efforts on advancing optical neural networks (ONNs), which bring significant advantages for machine learning (ML) in terms of power efficiency, parallelism, and computational speed. With the considerable benefits in computation speed and energy efficiency, there are significant interests in leveraging ONNs into medical sensing, security screening, drug detection, and autonomous driving. However, due to the challenge of implementing reconfigurability, deploying multi-task learning (MTL) algorithms on ONNs requires re-building and duplicating the physical diffractive systems, which significantly degrades the energy and cost efficiency in practical application scenarios. This work presents a novel ONNs architecture, namely, \textit{RubikONNs}, which utilizes the physical properties of optical systems to encode multiple feed-forward functions by physically rotating the hardware similarly to rotating a \textit{Rubik's Cube}. To optimize MTL performance on RubikONNs, two domain-specific physics-aware training algorithms \textit{RotAgg} and \textit{RotSeq} are proposed. Our experimental results demonstrate more than 4×\times improvements in energy and cost efficiency with marginal accuracy degradation compared to the state-of-the-art approaches

    Boron Nitride–Graphene Nanocapacitor and the Origins of Anomalous Size-Dependent Increase of Capacitance

    No full text
    Conventional wisdom suggests that decreasing dimensions of dielectric materials (e.g., thickness of a film) should yield increasing capacitance. However, the quantum capacitance and the so-called “dead-layer” effect often conspire to decrease the capacitance of extremely small nanostructures, which is in sharp contrast to what is expected from classical electrostatics. Very recently, first-principles studies have predicted that a nanocapacitor made of graphene and hexagonal boron nitride (h-BN) films can achieve superior capacitor properties. In this work, we fabricate the thinnest possible nanocapacitor system, essentially consisting of only monolayer materials: h-BN with graphene electrodes. We experimentally demonstrate an increase of the h-BN films’ permittivity in different stack structures combined with graphene. We find a significant increase in capacitance below a thickness of ∌5 nm, more than 100% of what is predicted by classical electrostatics. Detailed quantum mechanical calculations suggest that this anomalous increase in capacitance is due to the negative quantum capacitance that this particular materials system exhibits

    An Atomically Layered InSe Avalanche Photodetector

    No full text
    Atomically thin photodetectors based on 2D materials have attracted great interest due to their potential as highly energy-efficient integrated devices. However, photoinduced carrier generation in these media is relatively poor due to low optical absorption, limiting device performance. Current methods for overcoming this problem, such as reducing contact resistances or back gating, tend to increase dark current and suffer slow response times. Here, we realize the avalanche effect in a 2D material-based photodetector and show that avalanche multiplication can greatly enhance the device response of an ultrathin InSe-based photodetector. This is achieved by exploiting the large Schottky barrier formed between InSe and Al electrodes, enabling the application of a large bias voltage. Plasmonic enhancement of the photosensitivity, achieved by patterning arrays of Al nanodisks onto the InSe layer, further improves device efficiency. With an external quantum efficiency approaching 866%, a dark current in the picoamp range, and a fast response time of 87 ÎŒs, this atomic layer device exhibits multiple significant advances in overall performance for this class of devices

    Carbon Nanotube Terahertz Detector

    No full text
    Terahertz (THz) technologies are promising for diverse areas such as medicine, bioengineering, astronomy, environmental monitoring, and communications. However, despite decades of worldwide efforts, the THz region of the electromagnetic spectrum still continues to be elusive for solid state technology. Here, we report on the development of a powerless, compact, broadband, flexible, large-area, and polarization-sensitive carbon nanotube THz detector that works at room temperature. The detector is sensitive throughout the entire range of the THz technology gap, with responsivities as high as ∌2.5 V/W and polarization ratios as high as ∌5:1. Complete thermoelectric and opto-thermal characterization together unambiguously reveal the photothermoelectric origin of the THz photosignal, triggered by plasmonic absorption and collective antenna effects, and suggest that judicious design of thermal management and quantum engineering of Seebeck coefficients will lead to further enhancement of device performance

    3D Band Diagram and Photoexcitation of 2D–3D Semiconductor Heterojunctions

    No full text
    The emergence of a rich variety of two-dimensional (2D) layered semiconductor materials has enabled the creation of atomically thin heterojunction devices. Junctions between atomically thin 2D layers and 3D bulk semiconductors can lead to junctions that are fundamentally electronically different from the covalently bonded conventional semiconductor junctions. Here we propose a new 3D band diagram for the heterojunction formed between n-type monolayer MoS<sub>2</sub> and p-type Si, in which the conduction and valence band-edges of the MoS<sub>2</sub> monolayer are drawn for both stacked and in-plane directions. This new band diagram helps visualize the flow of charge carriers inside the device in a 3D manner. Our detailed wavelength-dependent photocurrent measurements fully support the diagrams and unambiguously show that the band alignment is type I for this 2D-3D heterojunction. Photogenerated electron–hole pairs in the atomically thin monolayer are separated and driven by an external bias and control the “on/off” states of the junction photodetector device. Two photoresponse regimes with fast and slow relaxation are also revealed in time-resolved photocurrent measurements, suggesting the important role played by charge trap states

    Tailoring the Physical Properties of Molybdenum Disulfide Monolayers by Control of Interfacial Chemistry

    No full text
    We demonstrate how substrate interfacial chemistry can be utilized to tailor the physical properties of single-crystalline molybdenum disulfide (MoS<sub>2</sub>) atomic-layers. Semiconducting, two-dimensional MoS<sub>2</sub> possesses unique properties that are promising for future optical and electrical applications for which the ability to tune its physical properties is essential. We use self-assembled monolayers with a variety of end termination chemistries to functionalize substrates and systematically study their influence on the physical properties of MoS<sub>2</sub>. Using electrical transport measurements, temperature-dependent photoluminescence spectroscopy, and empirical and first-principles calculations, we explore the possible mechanisms involved. Our data shows that combined interface-related effects of charge transfer, built-in molecular polarities, varied densities of defects, and remote interfacial phonons strongly modify the electrical and optical properties of MoS<sub>2</sub>. These findings can be used to effectively enhance or modulate the conductivity, field-effect mobility, and photoluminescence in MoS<sub>2</sub> monolayers, illustrating an approach for local and universal property modulations in two-dimensional atomic-layers
    corecore