2 research outputs found

    How VEGF-A and its splice variants affect breast cancer development – clinical implications

    Get PDF
    Background: Altered expression levels and structural variations in the vascular endothelial growth factor (VEGF) have been found to play important roles in cancer development and to be associated with the overall survival and therapy response of cancer patients. Particularly VEGF-A and its splice variants have been found to affect physiological and pathological angiogenic processes, including tumor angiogenesis, correlating with tumor progression, mostly caused by overexpression. This review focuses on the expression and impact of VEGF-A splice variants under physiologic conditions and in tumors and, in particular, the distribution and role of isoform VEGF(165)b in breast cancer. Conclusions and perspectives: Many publications already highlighted the importance of VEGF-A and its splice variants in tumor therapy, especially in breast cancer, which are summarized in this review. Furthermore, we were able to demonstrate that cytoplasmatic VEGFA/(165)b expression is higher in invasive breast cancer tumor cells than in normal tissues or stroma. These examples show that the detection of VEGF splice variants can be performed also on the protein level in formalin fixed tissues. Although no quantitative conclusions can be drawn, these results may be the starting point for further studies at a quantitative level, which can be a major step towards the design of targeted antibody-based (breast) cancer therapies

    The James Webb Space Telescope Mission

    No full text
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4 m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5 m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 yr, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit
    corecore