2,896 research outputs found
Anderson Localization in a String of Microwave Cavities
The field distributions and eigenfrequencies of a microwave resonator which
is composed of 20 identical cells have been measured. With external screws the
periodicity of the cavity can be perturbed arbitrarily. If the perturbation is
increased a transition from extended to localized field distributions is
observed. For very large perturbations the field distributions show signatures
of Anderson localization, while for smaller perturbations the field
distribution is extended or weakly localized. The localization length of a
strongly localized field distribution can be varied by adjusting the
penetration depth of the screws. Shifts in the frequency spectrum of the
resonator provide further evidence for Anderson localization.Comment: 7 pages RevTex, to be published in Phys. Rev.
A multi-sensor system for robotics proximity operations
Robots without sensors can perform only simple repetitive tasks and cannot cope with unplanned events. A multi-sensor system is needed for a robot to locate a target, move into its neighborhood and perform operations in contact with the object. Systems that can be used for such tasks are described
University of Dayton\u27s Endowment Growth Earns Ninth Spot Among U.S. Catholic Universities
News release announces Thomas E. Burkhardt\u27s comments on the University of Dayton\u27s endowment growth
Wave Dynamical Chaos in a Superconducting Three-Dimensional Sinai Billiard
Based on very accurate measurements performed on a superconducting microwave
resonator shaped like a desymmetrized three-dimensional (3D) Sinai billiard, we
investigate for the first time spectral properties of the vectorial Helmholtz,
i.e. non-quantum wave equation for a classically totally chaotic and
theoretically precisely studied system. We are thereby able to generalize some
aspects of quantum chaos and present some results which are consequences of the
polarization features of the electromagnetic waves.Comment: 4 pages RevTex; 4 postscript figures; to be published in Phys. Rev.
Lett.; Info: [email protected]
- …