2,473 research outputs found

    D-region differential-phase measurements and ionization variability studies

    Get PDF
    Measurements of electron densities in the D region are made by the partial-reflection differential-absorption and differential-phase techniques. The differential-phase data are obtained by a hard-wired phase-measuring system. Electron-sensity profiles obtained by the two techniques on six occasions are plotted and compared. Electron-density profiles obtained at the same time on 30 occasions during the years 1975 through 1977 are averaged to form a single profile for each technique. The effect of varying the assumed collision-frequency profile on these averaged profiles is studied. Time series of D-region electron-sensity data obtained by 3.4 minute intervals on six days during the summer of 1977 are examined for wave-like disturbances and tidal oscillations

    Investigation of the winds and electron concentration variability in the D region of the ionosphere by the partial-reflection radar technique

    Get PDF
    The development and first observations of the partial-reflection drifts experiment at Urbana, Illinois (40 N) are described. The winds data from the drifts experiment are compared with electron concentration data obtained by the differential-absorption technique to study the possible meteorological causes of the winter anomaly in the mesosphere at midlatitudes. winds data obtained by the meteor-radar experiment at Urbana are also compared with electron concentration data measured at Urban. A significant correlation is shown is both cases between southward winds and increasing electron concentration measured at the same location during winter. The possibility of stratospheric/mesospheric coupling is investigated by comparing satellite-measured 0.4 mbar geopotential data with mesospheric electron concentration data. No significant coupling was observed. The winds measured at Saskatoon, Saskatchewan (52 N) are compared with the electron concentrations measured at Urban, yielding constant fixed relationship, but significant correlations for short segments of the winter. A significant coherence is observed at discrete frequencies during segments of the winter

    Investigation of Planar Pick-up and Kicker Electrodes for Stochastic Cooling

    Get PDF
    The success of stochastic cooling crucially depends on the interaction between the beam and high frequency devices for detection (pick-up electrodes) and deflection (kicker electrodes). This contribution shows the theoretical investigation of a planar electrode to be used for stochastic cooling of secondary particles with a beta of 0.83. The coupling to the beam is realised by a slot line. Transition networks are added to extract the signal. The detailed investigation is performed via a numerical electromagnetic field analysis. The longitudinal kick of the deflectors is calculated as a function of the beam position and scaled to the applied voltage. According to the Panofsky-Wenzel theorem the transverse kick is obtained simultaneously. The electromagnetic properties of the discussed electrode are compared to existing ones as currently in use in the ESR storage ring (GSI, Darmstadt)

    Zonal flow generation in collisionless trapped electron mode turbulence

    Full text link
    In the present work the generation of zonal flows in collisionless trapped electron mode (TEM) turbulence is studied analytically. A reduced model for TEM turbulence is utilized based on an advanced fluid model for reactive drift waves. An analytical expression for the zonal flow growth rate is derived and compared with the linear TEM growth, and its scaling with plasma parameters is examined for typical tokamak parameter values.Comment: 20 pages, 4 figure

    Comparison of the COBE FIRAS and DIRBE Calibrations

    Get PDF
    We compare the independent FIRAS and DIRBE observations from the COBE in the wavelength range 100-300 microns. This cross calibration provides checks of both data sets. The results show that the data sets are consistent within the estimated gain and offset uncertainties of the two instruments. They show the possibility of improving the gain and offset determination of DIRBE at 140 and 240 microns.Comment: Accepted for publication in the Astrophysical Journal 11 pages, plus 3 figures in separate postscript files. Figure 3 has three part

    Long-term monitoring reveals forest tree community change driven by atmospheric sulphate pollution and contemporary climate change

    Get PDF
    Diversity and Distributions published by John Wiley & Sons Ltd Aim: Montane environments are sentinels of global change, providing unique opportunities to assess impacts on species diversity. Multiple anthropogenic stressors such as climate change and atmospheric pollution may act concurrently or synergistically in restructuring communities. Thus, a major challenge for conservation is untangling the relative importance of different stressors. Here, we combine long-term monitoring with multivariate community modelling to estimate the anthropogenic drivers shaping forest tree diversity along an elevational gradient. Location: Camels Hump Mountain, Vermont, USA. Methods: We used Generalized Dissimilarity Modelling (GDM) to model spatial and temporal turnover in beta diversity along an elevational gradient over a 50-year period and tested for spatiotemporal shifts in density and elevational distribution of individual species. GDMs were used to predict community turnover as nonlinear functions of changes in elevation, climate and atmospheric pollution. Results: We observed significant shifts in elevational range and density of individual species, which contributed to an overall reduction in the elevational gradient in beta diversity through time. GDMs showed the combined effects of sulphate deposition and temperature as drivers of this temporal reduction in beta diversity. Spatiotemporal changes differed among species, with shifts observed both up- and downslope. For example, in a reversal of a previous upslope range contraction, red spruce (Picea rubens Sarg.) increased in density and shifted downslope since the 1990s, occupying warmer, drier climates. Main conclusion: Our results demonstrate that global change is impacting the stratification of forest tree diversity along elevational gradients, but the responses of individual species are complex and variable in direction. We suggest abiotic drivers may directly impact individual species while also indirectly altering species interactions along elevational gradients. Our approach modelling the drivers of compositional turnover quantifies the rate and amount of change in beta diversity along environmental gradients and serves as a powerful complement to studying species-specific responses
    corecore