5,278 research outputs found
Dileptons in a coarse-grained transport approach
We calculate dilepton spectra in heavy-ion collisions using a coarse-graining
approach to the simulation of the created medium with the UrQMD transport
model. This enables the use of dilepton-production rates evaluated in
equilibrium quantum-field theory at finite temperatures and chemical
potentials.Comment: 4 pages, 2 figures, contribution to the proceedings of "The 15th
International Conference on Strangeness in Quark Matter" (SQM 2015), 06-11
July in Dubna, Russi
0- quantum transition in a carbon nanotube Josephson junction: universal phase dependence and orbital degeneracy
We investigate experimentally the supercurrent in a clean carbon nanotube
quantum dot, close to orbital degeneracy, connected to superconducting leads in
a regime of strong competition between local electronic correlations and
superconducting proximity effect. For an odd occupancy of the dot and
intermediate coupling to the reservoir, the Kondo effect can develop in the
normal state and screen the local magnetic moment of the dot. This leads to
singlet-doublet transitions that strongly affect the Josephson effect in a
single-level quantum dot: the sign of the supercurrent changes from positive to
negative (0 to -junction). In the regime of strongest competition between
the Kondo effect and proximity effect, meaning that the Kondo temperature
equals the superconducting gap, the magnetic state of the dot undergoes a first
order quantum transition induced by the superconducting phase difference across
the junction. This is revealed experimentally by anharmonic current-phase
relations. In addition, the very specific electronic configuration of clean
carbon nanotubes, with two nearly orbitally degenerated states, leads to
different physics depending whether only one or both quasi-degenerate upper
levels of the dots participate to transport, which is determined by their
occupancy and relative widths. When the transport of Cooper pairs takes place
through only one of these levels, we find that the phase diagram of the
phase-dependent 0- transition is a universal characteristic of a
discontinuous level-crossing quantum transition at zero temperature. In the
case were two levels participate to transport, the nanotube Josephson current
exhibits a continuous 0- transition, independent of the superconducting
phase, revealing a different physical mechanism of the transition.Comment: 14 pages, 12 figure
Cosmological Evolution of Supergiant Star-Forming Clouds
In an exploration of the birthplaces of globular clusters, we present a
careful examination of the formation of self-gravitating gas clouds within
assembling dark matter haloes in a hierarchical cosmological model. Our
high-resolution smoothed particle hydrodynamical simulations are designed to
determine whether or not hypothesized supergiant molecular clouds (SGMCs) form
and, if they do, to determine their physical properties and mass spectra. It
was suggested in earlier work that clouds with a median mass of several 10^8
M_sun are expected to assemble during the formation of a galaxy, and that
globular clusters form within these SGMCs. Our simulations show that clouds
with the predicted properties are indeed produced as smaller clouds collide and
agglomerate within the merging dark matter haloes of our cosmological model. We
find that the mass spectrum of these clouds obeys the same power-law form
observed for globular clusters, molecular clouds, and their internal clumps in
galaxies, and predicted for the supergiant clouds in which globular clusters
may form. We follow the evolution and physical properties of gas clouds within
small dark matter haloes up to z = 1, after which prolific star formation is
expected to occur. Finally, we discuss how our results may lead to more
physically motivated "rules" for star formation in cosmological simulations of
galaxy formation.Comment: Accepted to The Astrophysical Journal; 17 pages, 8 figure
Star Formation, Supernovae Feedback and the Angular Momentum Problem in Numerical CDM Cosmogony: Half Way There?
We present a smoothed particle hydrodynamic (SPH) simulation that reproduces
a galaxy that is a moderate facsimile of those observed. The primary failing
point of previous simulations of disk formation, namely excessive transport of
angular momentum from gas to dark matter, is ameliorated by the inclusion of a
supernova feedback algorithm that allows energy to persist in the model ISM for
a period corresponding to the lifetime of stellar associations. The inclusion
of feedback leads to a disk at a redshift , with a specific angular
momentum content within 10% of the value required to fit observations. An
exponential fit to the disk baryon surface density gives a scale length within
17% of the theoretical value. Runs without feedback, with or without star
formation, exhibit the drastic angular momentum transport observed elsewhere.Comment: 4 pages, 3 figures, accepted for publication in ApJ Letter
Broadside radar echoes from ionized trails
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77210/1/AIAA-2347-553.pd
From algebra to logic: there and back again -- the story of a hierarchy
This is an extended survey of the results concerning a hierarchy of languages
that is tightly connected with the quantifier alternation hierarchy within the
two-variable fragment of first order logic of the linear order.Comment: Developments in Language Theory 2014, Ekaterinburg : Russian
Federation (2014
Development, fabrication, testing, and delivery of advanced filamentary composite nondestructive test standards Final report
Development and fabrication of filament composite nondestructive test standard
- …