27 research outputs found

    Identification of immunotherapy and chemotherapy-related molecular subtypes in colon cancer by integrated multi-omics data analysis

    Get PDF
    BackgroundColon cancer is a highly heterogeneous disease, and identifying molecular subtypes can provide insights into deregulated pathways within tumor subsets, which may lead to personalized treatment options. However, most prognostic models are based on single-pathway genes.MethodsIn this study, we aimed to identify three clinically relevant subtypes of colon cancer based on multiple signaling pathways-related genes. Integrative multi-omics analysis was used to explain the biological processes contributing to colon cancer aggressiveness, recurrence, and progression. Machine learning methods were employed to identify the subtypes and provide medication guidance for distinct subtypes using the L1000 platform. We developed a robust prognostic model (MKPC score) based on gene pairs and validated it in one internal test set and three external test sets. Risk-related genes were extracted and verified by qPCR.ResultsThree clinically relevant subtypes of colon cancer were identified based on multiple signaling pathways-related genes, which had significantly different survival state (Log-Rank test, p<0.05). Integrative multi-omics analysis revealed biological processes contributing to colon cancer aggressiveness, recurrence, and progression. The developed MKPC score, based on gene pairs, was robust in predicting prognosis state (Log-Rank test, p<0.05), and risk-related genes were successfully verified by qPCR (t test, p<0.05). An easy-to-use web tool was created for risk scoring and therapy stratification in colon cancer patients, and the practical nomogram can be extended to other cancer types.ConclusionIn conclusion, our study identified three clinically relevant subtypes of colon cancer and developed a robust prognostic model based on gene pairs. The developed web tool is a valuable resource for researchers and clinicians in risk scoring and therapy stratification in colon cancer patients, and the practical nomogram can be extended to other cancer types

    Multiple machine learning methods aided virtual screening of Na(V)1.5 inhibitors

    Get PDF
    Na(v)1.5 sodium channels contribute to the generation of the rapid upstroke of the myocardial action potential and thereby play a central role in the excitability of myocardial cells. At present, the patch clamp method is the gold standard for ion channel inhibitor screening. However, this method has disadvantages such as high technical difficulty, high cost and low speed. In this study, novel machine learning models to screen chemical blockers were developed to overcome the above shortage. The data from the ChEMBL Database were employed to establish the machine learning models. Firstly, six molecular fingerprints together with five machine learning algorithms were used to develop 30 classification models to predict effective inhibitors. A validation and a test set were used to evaluate the performance of the models. Subsequently, the privileged substructures tightly associated with the inhibition of the Na(v)1.5 ion channel were extracted using the bioalerts Python package. In the validation set, the RF-Graph model performed best. Similarly, RF-Graph produced the best result in the test set in which the Prediction Accuracy (Q) was 0.9309 and Matthew's correlation coefficient was 0.8627, further indicating the model had high classification ability. The results of the privileged substructures indicated Sulfa structures and fragments with large Steric hindrance tend to block Na(v)1.5. In the unsupervised learning task of identifying sulfa drugs, MACCS and Graph fingerprints had good results. In summary, effective machine learning models have been constructed which help to screen potential inhibitors of the Na(v)1.5 ion channel and key privileged substructures with high affinity were also extracted.Peer reviewe

    Systematic review of computational methods for drug combination prediction

    Get PDF
    Synergistic effects between drugs are rare and highly context-dependent and patient-specific. Hence, there is a need to develop novel approaches to stratify patients for optimal therapy regimens, especially in the context of personalized design of combinatorial treatments. Computational methods enable systematic in-silico screening of combination effects, and can thereby prioritize most potent combinations for further testing, among the massive number of potential combinations. To help researchers to choose a prediction method that best fits for various real-world applications, we carried out a systematic literature review of 117 computational methods developed to date for drug combination prediction, and classified the methods in terms of their combination prediction tasks and input data requirements. Most current methods focus on prediction or classification of combination synergy, and only a few methods consider the efficacy and potential toxicity of the combinations, which are the key determinants of therapeutic success of drug treatments. Furthermore, there is a need to further develop methods that enable dose-specific predictions of combination effects across multiple doses, which is important for clinical translation of the predictions, as well as model-based identification of biomarkers predictive of heterogeneous drug combination responses. Even if most of the computational methods reviewed focus on anticancer applications, many of the modelling approaches are also applicable to antiviral and other diseases or indications.(c) 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.Peer reviewe

    Robust prognostic model based on immune infiltration-related genes and clinical information in ovarian cancer

    Get PDF
    Immune infiltration of ovarian cancer (OV) is a critical factor in determining patient's prognosis. Using data from TCGA and GTEx database combined with WGCNA and ESTIMATE methods, 46 genes related to OV occurrence and immune infiltration were identified. Lasso and multivariate Cox regression were applied to define a prognostic score (IGCI score) based on 3 immune genes and 3 types of clinical information. The IGCI score has been verified by K-M curves, ROC curves and C-index on test set. In test set, IGCI score (C-index = 0.630) is significantly better than AJCC stage (C-index = 0.541, p < 0.05) and CIN25 (C-index = 0.571, p < 0.05). In addition, we identified key mutations to analyse prognosis of patients and the process related to immunity. Chi-squared tests revealed that 6 mutations are significantly (p < 0.05) related to immune infiltration: BRCA1, ZNF462, VWF, RBAK, RB1 and ADGRV1. According to mutation survival analysis, we found 5 key mutations significantly related to patient prognosis (p < 0.05): CSMD3, FLG2, HMCN1, TOP2A and TRRAP. RB1 and CSMD3 mutations had small p-value (p < 0.1) in both chi-squared tests and survival analysis. The drug sensitivity analysis of key mutation showed when RB1 mutation occurs, the efficacy of six anti-tumour drugs has changed significantly (p < 0.05).Peer reviewe

    An immunity and pyroptosis gene-pair signature predicts overall survival in acute myeloid leukemia

    Get PDF
    Treatment responses of patients with acute myeloid leukemia (AML) are known to be heterogeneous, posing challenges for risk scoring and treatment stratification. In this retrospective multi-cohort study, we investigated whether combining pyroptosis- and immune-related genes improves prognostic classification of AML patients. Using a robust gene pairing approach, which effectively eliminates batch effects across heterogeneous patient cohorts and transcriptomic data, we developed an immunity and pyroptosis-related prognostic (IPRP) signature that consists of 15 genes. Using 5 AML cohorts (n = 1327 patients total), we demonstrate that the IPRP score leads to more consistent and accurate survival prediction performance, compared with 10 existing signatures, and that IPRP scoring is widely applicable to various patient cohorts, treatment procedures and transcriptomic technologies. Compared to current standards for AML patient stratification, such as age or ELN2017 risk classification, we demonstrate an added prognostic value of the IPRP risk score for providing improved prediction of AML patients. Our web-tool implementation of the IPRP score and a simple 4-factor nomogram enables practical and robust risk scoring for AML patients. Even though developed for AML patients, our pan-cancer analyses demonstrate a wider application of the IPRP signature for prognostic prediction and analysis of tumor-immune interplay also in multiple solid tumors.Peer reviewe

    Mlsp : A bioinformatics tool for predicting molecular subtypes and prognosis in patients with breast cancer

    Get PDF
    The molecular landscape in breast cancer is characterized by large biological heterogeneity and variable clinical outcomes. Here, we performed an integrative multi-omics analysis of patients diagnosed with breast cancer. Using transcriptomic analysis, we identified three subtypes (cluster A, cluster B and cluster C) of breast cancer with distinct prognosis, clinical features, and genomic alterations: Cluster A was asso-ciated with higher genomic instability, immune suppression and worst prognosis outcome; cluster B was associated with high activation of immune-pathway, increased mutations and middle prognosis out-come; cluster C was linked to Luminal A subtype patients, moderate immune cell infiltration and best prognosis outcome. Combination of the three newly identified clusters with PAM50 subtypes, we pro-posed potential new precision strategies for 15 subtypes using L1000 database. Then, we developed a robust gene pair (RGP) score for prognosis outcome prediction of patients with breast cancer. The RGP score is based on a novel gene-pairing approach to eliminate batch effects caused by differences in heterogeneous patient cohorts and transcriptomic data distributions, and it was validated in ten cohorts of patients with breast cancer. Finally, we developed a user-friendly web-tool (https://sujiezhulab.shi-nyapps.io/BRCA/) to predict subtype, treatment strategies and prognosis states for patients with breast cancer.(c) 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-commons.org/licenses/by-nc-nd/4.0/).Peer reviewe

    Expression and Prognostic Characteristics of Ferroptosis-Related Genes in Colon Cancer

    No full text
    Ferroptosis is a new type of programmed cell death, which occurs with iron dependence. Previous studies have showed that ferroptosis plays an important regulatory role in the occurrence and development of tumors. Colon cancer is one of the major morbidities and causes of mortality in the world. This study used RNA-seq and colon cancer clinical data to explore the relationship between ferroptosis-related genes and colon cancer. Based on the fifteen prognostic ferroptosis-related genes, two molecular subgroups of colon cancer were identified. Surprisingly, we also found cluster2 was characterized by lower mutation burden and expression of checkpoint genes, better survival, and higher expression of NOX1. Moreover, cluster2 has fewer BRAF mutations. We also found the expression of NOX1 is related to the status of BRAF. Finally, using 15 ferroptosis-related genes from The Cancer Genome Atlas cohort, we constructed a prognosis model, and this model may be used to predict the prognosis of patients in clinics
    corecore