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The molecular landscape in breast cancer is characterized by large biological heterogeneity and variable
clinical outcomes. Here, we performed an integrative multi-omics analysis of patients diagnosed with
breast cancer. Using transcriptomic analysis, we identified three subtypes (cluster A, cluster B and cluster
C) of breast cancer with distinct prognosis, clinical features, and genomic alterations: Cluster A was asso-
ciated with higher genomic instability, immune suppression and worst prognosis outcome; cluster B was
associated with high activation of immune-pathway, increased mutations and middle prognosis out-
come; cluster C was linked to Luminal A subtype patients, moderate immune cell infiltration and best
prognosis outcome. Combination of the three newly identified clusters with PAM50 subtypes, we pro-
posed potential new precision strategies for 15 subtypes using L1000 database. Then, we developed a
robust gene pair (RGP) score for prognosis outcome prediction of patients with breast cancer. The RGP
score is based on a novel gene-pairing approach to eliminate batch effects caused by differences in
heterogeneous patient cohorts and transcriptomic data distributions, and it was validated in ten cohorts
of patients with breast cancer. Finally, we developed a user-friendly web-tool (https://sujiezhulab.shi-
nyapps.io/BRCA/) to predict subtype, treatment strategies and prognosis states for patients with breast
cancer.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Breast cancer is the most common malignancy in women all
over the world. In 2018, there were 270,000 newly diagnosed cases
and more than 40,000 new deaths from breast cancer in the United
States [1,2]. In the past decades, mortality of breast cancer has
decreased mainly due to early detection and more effective sys-
temic treatments [3]. However, most patients with breast cancer
are often only diagnosed at a middle or late disease stage [4].

Breast cancer patients are currently stratified using the histo-
logic classification and AJCC staging system [5,6]. However, given
that breast cancer is a very heterogeneous disease, showing large
differences in aggressiveness and response to therapy, patients
with similar clinical features may have very different prognoses
[7]. Therefore, it is necessary to consider many other factors to
facilitate and improve patients surveillance and treatment. In clin-
ical practice, the immunohistochemical markers estrogen (ER),
progesterone (PR), and human epidermal growth factor receptor2
(HER2) are used to guide diagnosis and treatment decisions [8].
Earlier studies based on gene expression profiling suggest that
breast cancer can be stratified into five main molecular subtypes:
luminal A, luminal B, HER2-enriched, basal-like, and normal-like
[7,9]. The molecular classification of breast tumors based on gene
expression patterns has also been successfully translated into tests
to support clinical decisions [8].

The tumor microenvironment has also been linked with prog-
nosis in breast cancer. High infiltration of tumor-infiltrating lym-
phocytes (TILs) is associated with prognosis in many cancer
types, including breast cancer [10–17]. Furthermore, numerous
studies reported that TILs also play an important role in cancer ini-
tiation and progression [18–20]. A better understanding of the
immune activity of TILs in breast cancer would provide clinicians
with more accurate information on their patients’ prognoses.
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Increased genomic instability (GI) is also a relevant feature of
breast tumors, both at somatic DNA copy-number alterations
(SCNA) levels and point mutation [21,22]. These two processes
(TILs and GI) play an important role in activating oncogenes or
inactivating tumor suppressors genes [19,23], therefore potentially
also helping elucidate breast cancer biology.

However, the development and application of a prognostic gene
signature have limitations, such as inconsistent data formats and
batch effects between different profiling platforms. In addition,
data sets from various patient cohorts might also have been pro-
cessed with different data methods, leading to suboptimal signa-
tures. Therefore, it is necessary to design a more robust
prognostic model that can eliminate the influence of batch effects.

Currently, most of the available prognostic models have been
based on single pathway genes [24–27]; however, there is a wide
appreciation that cancer development involves multiple signaling
pathways, including cell cycle, immune, and metabolic pathways.
In this study, we identified three clinically relevant subtypes of
breast cancer based on multiple cancer-related signaling. To better
understand three subtypes of breast cancer, integrative multi-
omics analysis is used to explain the biological processes con-
tributing to breast cancer aggressiveness, recurrence, and progres-
sion in The Cancer Genome Atlas (TCGA). The molecular
characterization of breast tumors can both help the development
of new therapies and the selection of patients for the appropriate
therapies. Combined with PAM50 subtypes, we identified 15 sub-
types of breast cancer and predicted medication guidance for dis-
tinct subtypes using L1000 platform [28] and mixed machine
learning methods, namely univariate COX regression and unsuper-
vised clustering. Then we wanted to establish a robust prognosis
model for breast cancer patients. Based on the gene pairing
approach, we propose a novel analytic approach to design a robust
prognostic model, which we have validated in ten external test
sets. Finally, we designed a machine learning guided molecular
subtypes and prognosis (MLSP) prediction platform to help aid
clinical decisions from diagnosis to treatment of breast cancer
patients.
2. Methods

2.1. Breast cancer datasets

We performed a bioinformatic analysis on publicly available
transcriptomic and genomic data from the 11 breast cancer cohorts
(Supplementary Table 1). The TCGA is hosted by the NCI’s Genomic

Data Commons (GDC) https://portal.gdc.cancer.gov/ and contains
RNA-seq, copy number, mutation and clinical data. These data
were downloaded from TCGA GDC, after combing the clinical infor-
mation with expression data, we obtained expression daya of 1,900
patients and 113 control sample (Supplementary Tables 1-4).The
METABRIC cohort was accessed via the cbioportal website
(https://www.cbioportal.org/). Data from other cohorts
(GSE20685, GSE21653, GSE17705, GSE11121, GSE7390,
GSE20711, GSE1456, GSE31448, GSE4922) were obtained from

the GEO database (http://www.ncbi.nlm.nih.gov/gds).
We used ANOVA test and Chi-square test to do clinical informa-

tion analysis across these cohorts. As for missing values in expres-
sion data, we deleted the genes with any missing value across
these 11 cohorts. And we changed all expression data in these 11
cohorts to log2(expression +1) format. Then, we used TCGA data
for clustering, development of the signature, and training of the
prognosis model. The METABRIC cohort samples, which contained
both complete normalized RNA microarray profiling on the Illu-
mina HT-12 v3 array [29] and clinical data (1981 fresh-frozen pri-
6413
mary breast cancer samples), were used for constructing a
nomogram.

2.2. Consensus clustering

We retrieved the queries including ‘‘breast cancer”, ‘‘prognosis
signature” and ‘‘breast cancer prognosis model” in PubMed, after
we manually pick the articles containing the genes with potential
prognostic value, and there are 34 studies left containing 183 genes
(Supplementary Table 5) [30–63], noting that all of them are pub-
lished within two years. The key reason why we chose papers
within two years is that the accuracy of prognostic models have
improved in the past two years since the researchers tend to verify
the prediction model in many cohorts instead of just using one
cohort, so the genes in these papers are relatively more accurate,
which enabled our next analysis. Furthermore, since the studies
related to prognosis of BRCA are too much, to avoid the curse of
dimensionality, we focused on the studies within two years. Then,
using univariate survival analysis in the TCGA-BRCA cohort, 65
genes were identified to be associated with prognosis (p < 0.05,
Supplementary Table 6). Based on the expression of 65 genes, the
unsupervised k-means consensus clustering was performed to
divide the patients into different clusters, with 50 repetitions.
Notably, 80 % of subsampling will be repeated for each time, and
k-varying was seting from 2 to 10 clusters. The optimal number
of clusters was determined according to the cumulative distribu-
tion function (CDF), which contained the information about the
corresponding empirical cumulative distribution. Finally, we iden-
tified three cluster (k = 3), namely Cluster A, B and C. During this
process, the R packages Consensus ClusterPlus was used to perform
clustering analysis [64]. To verify the importance of these 65 genes,
this method was also used to perform clustering in the Pan cancer
datasets (33 kinds of cancers in TCGA database), since that proved
these genes are closely related to the outcomes of cancer patients
to some degree if the patients can be divided into different clusters
with different survival in more than one type of cancer based on
these genes.

2.3. Genomic instability and somatic copy-number alterations (SCNA)
analysis

The score of genomic instability (GI) and somatic copy-number
alterations (SCNAs) in the TCGA dataset were obtain from the pre-
vious study [65]. After matching the other clinical information,
such as the age, gender, stage,.et, there were 979 patients left, not-
ing that these 979 patients contained all the information, including
age, gender, stage, T/M/N, status, Cluster, focal-level SCNA score,
chromosome-level SCNA score, arm-level SCNA score, Chromo-
some/arm score, overall score and GI, as the summary data of these
information above was shown in Supplementary Table 7.

2.4. Gene set variation analysis (GSVA) and functional annotation

To explore the biological mechanisms underlying the behavior
of distinct subtypes of breast cancer and the degree of enrichment
of the KEGG pathways, we used gene set variation analysis (GSVA)
[66] and GSVA R packages. The main reason why we performed the
GSVA instead of GSEA is that most GSE methods, such as GSEA, are
supervised and population based, in that they compute an entich-
ment score per gene set to seacribe the entire data set, modeled on
a phenotype (such as patient vs control). More importantly, GSEA
method did not take the gene correlations into account, which
might lead to an increases number of false-positive gene sets, thus
increasing the number of false-positive gene sets with respect to
GSEA. GSVA was developed to these major drawbacks above, and
also utilizes density estimates for evaluating sample-wise enrich-
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ment, but by omitting phenotypic information, which enables
more broader applications with higher statistical power than the
other methods[66]. Specifically, the GSVA method includes four
steps, including evaluating the gene expression level statistic,
ranking order per sample, using the Kolmogorov-Smirnov (KS) like
randomwalk statistic, and using two approaches to turn the KS like
random walk stastic into an enriment statistc (ES, also called GSVA
score). The gene sets of ‘‘c2.cp.kegg.v6.2.symbols” were down-
loaded from MsigDB datasets to run GSVA analysis. An adjusted
P of <0.05 was considered statistically significant. To clarify the dif-
ferential signaling pathway among three subtypes of BRCA, the
intersection pathways among cluster A compared with cluster B,
cluster A compared with cluster C and cluster B compared with
cluster C were selected, and displayed in a heatmap.

2.5. Single sample gene expression pathway analysis

To further investigate gene programs enriched by each TCGA
breast samples, we employed a single sample gene set enrichment
analysis (ssGSEA) method from the GSVA R package [66]. This
method uses the gene expression data and the gene set as input,
noting the phenotype information is not necessary, and then ranks
the inputed gene based on gene expression, finally calculates the
Enrichment score (ES) based on the input data. The gene set for
marking infiltration of immune cell type in the tumor microenvi-
ronment, obtained as described before [67–69], which contained
various human immune cell subtypes, such as activated CD8 T cell,
activated dendritic cell, macrophage, natural killer T cell, and reg-
ulatory T cell and so on. The one-way ANOVA test was used to
compare the infiltration of immune cell among distinct three sub-
types. The enrichment scores calculated by ssGSEA analysis were
utilized to represent the relative abundance of each infiltrating cell
in the tumor microenvironment in each sample.

2.6. PD1/CTLA4 response prediction and PAM50 subtyping.

To predict the immunotherapy response of patients with dis-
tinct subtypes of breast cancer, we downloaded the immunother-
apy prediction information from TCIA database(https://tcia.at/
home) database (Supplementary Table 8), which provides results
of comprehensive immunogenomic analyses of next generation
sequencing data (NGS) data for 20 solid cancers from the TCGA
and other data sources. The immunophenoscore (IPS) can be used
to predict the response to the immunotherapy agents PD1 and
CTLA4. The information of PAM50 subtyping was downloaded from
TCIA (Supplementary Table 10), and we combined the PAM50 sub-
typing with our subtypes identified in this studies to obtain more
refined subtypes of BRCA as well as closing to the clinic (Supple-
mentary Table 10), as the PAM50 subtyping is commonly used in
clinic.

2.7. Tumor mutation burden (TMB) analysis

The tumor mutation burden (TMB) has been shown to be asso-
ciated with the efficacy of immunotherapy in multiple cancer
types. Therefore, we estimated the TMB value of breast cancer
samples by calculating the number of gene mutations per million
bases, which was calculated using the TMB function in ‘‘maftools”
packages in R software, and the result of TMB value was shown in
Supplementary Table 9. Mutation data were downloaded from the

GDC Data Portal (https://portal.gdc.cancer.gov/) and intersected
with samples from the expression dataset. Then, we obtained sam-
ples from 974 patients with breast cancer for which both expres-
sion and mutation data were available. For these patients, we
used the ‘‘maftools” packages in R to plot waterfall charts and
6414
mutation gene cloud charts, and identified differentially mutated
genes (DMGs) between different subtypes of breast cancer. The
one-way ANOVA test was used to compare the TMB values of dis-
tinct three subtypes. Given the significant survival differences
between cluster A and cluster C, we further explored the DMGs
between these two clusters and identified three genes related to
survival. The significance criteria for determining DMGs, as well
as for the survival and gene mutation data was set as a p value
of<0.05.

2.8. Gene feature selection of each subtype of BRCA and drug analysis

To more precisely define subtypes of breast cancer, we com-
bined 5 kinds of PAM50 subtypes with our new three clusters
and identified 15 subtypes. To identify the gene features of each
specific subtype, the empirical Bayesian approach of limma R pack-
age was applied. Briefly, we determined differentially expressed
genes (DEGs) between each of the 15 subtypes and normal breast
tissues [70]. The significance criteria for determining DEGs was set
as an adjusted P value <0.001 and |log2FC| > 1.5. Then, the protein–
protein interaction (PPI) network was constructed for these DEGs
by Cytoscape based on the STRING database, with the correspond-
ing topologies were shown in Supplementary Table 11, including
the number of nodes, edges and average degree etc. Next, the
Degree method (Node connect degree) in Plug-in CytoHubba were
used to select the key genes in PPI (Supplementary Table 12). These

genes were input of L1000 [28] (https://clue.io/), a tool used to
screen drugs that can reverse gene expression from disease state
to healthy state. And these drugs were regarded as effective drugs
for special disease. In our research, drugs with CMap connectivity
(tau) score [28] of < -0.9 were selected and included in our recom-
mendation list if the drug was already approved by the Food and
Drug Administration (FDA) for treatment of breast cancer (Supple-
mentary Table 13).

2.9. Prognostic model building

To construct a robust model for predicting the prognosis of
patients with breast cancer, we performed a gene-paired method
to eliminate batch effect using 65 prognosis related genes. In our
previous study, we have verified the robustness of gene-paired
method, and it is an effective way to reduce the batch effect with-
out changing the distribution of raw data, so this method can work
both for RNAseq and Microarray data [71]. If the expression of gene
A > expression of gene B, then the feature ‘‘Gene A| Gene B” was
marked as 1; otherwise it is marked as 0. In addition, if the expres-
sion level of gene A in all of the samples was higher than that of
gene B, then the feature Gene A|Gene B was marked as 1 in all of
the samples. Such features do not contain classification informa-
tion, as it only contain the 0 and 1 information, and, therefore, gene
pairs whose frequency of the ‘‘1” label in the training set was<0.1
or greater than 0.9 were deleted. Based on the gene pair method,
we identified 891 gene-pairs as features, which were further
reduced to 34 gene-pairs using the univariate Cox regression
(p < 0.001) and LASSO regression. Then, multivariate Cox regres-
sion was used to construct a Robust Gene-Paired (RGP) signature
containing 16 gene-pairs (Supplementary Table 14). In this pro-
cess, we used ‘‘glmnet”, ‘‘survival”, and ‘‘survminer” R packages.

2.10. Prognostic model validation

We first performed Kaplan-Meier survival analysis (Log-rank
test) based on the RGP signature in the TCGA-BRCA cohort (train-
ing set) and the other 10 test sets. The different types of survival
time in these cohorts were used in this process (Supplementary

https://tcia.at/home
https://tcia.at/home
https://portal.gdc.cancer.gov/
https://link.zhihu.com/?target=https://links.jianshu.com/go%253Fto%253Dhttps%25253A%25252F%25252Fclue.io%25252F


J. Zhu, W. Kong, L. Huang et al. Computational and Structural Biotechnology Journal 20 (2022) 6412–6426
Table 1), including overall survival time (OS), disease-free survival
time (DFS), relapse-free survival time (RFS), and distant
metastasis-free survival time (DMFS). To further examine the
robustness of the RGP signature, we compared its performance
against other six signatures used as baseline models, namely the
autophagy related gene signature (ARG) [50], ferroptosis related
gene signature (FRG)[41], macrophage marker gene signature
(MMGS) [49], nuclear receptors related gene signature (NR) [55],
DNA repair related gene signature (DRG) [60], and hypoxia related
gene signature (HRG) [42], by analyzing the area under the receiver
operating characteristic (ROC-AUC) curves for predicting patient
survival. The 3-, 5-, and 7-year AUC-ROC values were then used
to compare the prognostic ability of the models using a paired t-
test (Table 1).
2.11. Nomogram construction and validation

To construct a nomogram, we divided the METABRIC cohort,
which contains various types of clinical information, into a training
and a test set. To explore whether the RGP score is an independent
risk factor among other clinical features, we conducted a univariate
and multivariate independent prognostic analysis using the
METABRIC training set. Then, we selected the significant factors
in both univariate and multivariate independent prognostic analy-
sis to establish a nomogram using the training set. The nomogram
performance was examined in the training and test set by analysis
of the AUC-ROCs and calibration curves.
2.12. Design of a web app

To use a nomogram based on our clustering results and RGP
score, and provide clinical guidance to help inform patient’s prog-

nosis and therapeutics, we designed a web app (https://sujiezhu-

lab.shinyapps.io/BRCA/). As the input, we used the expression of
65 genes and 3 types of clinical information (age, PAM50 and Not-
tingham prognostic index), with the output being treatment-
related information, including the subtypes breast cancer patients
belonged to, potential drugs, and the patient’s survival rate.
Table1
Comparison of the RGP score with other signatures.

RGP Signature ARG Signature FRG Signature M

METABRIC 0.590 ± 0.018 0.594 ± 0.023 0.509 ± 0.006* 0.
p value 0.234 0.005 0.
GSE20685 0.650 ± 0.010 0.628 ± 0.016 0.634 ± 0.035 0.
p value 0.132 0.284 0.
GSE21653 0.698 ± 0.026 0.551 ± 0.019* 0.579 ± 0.026* 0.
p value 0.001 0.039 0.
GSE17705 0.687 ± 0.020 0.621 ± 0.057 0.571 ± 0.012* 0.
p value 0.083 0.004 0.
GSE11121 0.703 ± 0.008 0.573 ± 0.022* 0.645 ± 0.029* 0.
p value 0.003 0.040 0.
GSE7390 0.616 ± 0.040 0.600 ± 0.017 0.618 ± 0.027 0.
p value 0.244 0.487 0.
GSE20711 0.687 ± 0.072 0.529 ± 0.033* 0.402 ± 0.066* 0.
p value 0.027 0.049 0.
GSE1456 0.573 ± 0.057 0.498 ± 0.028 0.678 ± 0.007 0.
p value 0.166 0.073 0.
GSE31448 0.677 ± 0.026 0.560 ± 0.014* 0.567 ± 0.027* 0.
p value 0.004 0.047 0.
GSE4922 0.555 ± 0.018 0.602 ± 0.030# 0.543 ± 0.007 0.
p value 0.025 0.256 0.

Footnote: The standard deviation was calculated over the 3-, 5-, and 7-year ROC-AUC val
six signatures in 3-,5- and 7-year three time points. *means ROC-AUCs of the RGP signatur
RGP signature are significantly lower than values of this labeleed signature significantly
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2.13. Pan-cancer analysis of overall survival

To explore the value of the RGP score to other types of cancers,
data from 33 kinds of cancer from the TCGA were used for pan-
cancer analysis. The TCGA pan-cancer data were downloaded from

the UCSC Xena database (https://xena.ucsc.edu/), and included
10,071 cancer patients with complete expression profiles, muta-
tion data, overall survival (OS) and survival status. These expres-
sion data were used to calculate the RGP score and perform Cox
prognostic analysis to calculate the hazard ratio. Kaplan-Meier sur-
vival analysis (Log-rank test) was also used to evaluate the progno-
sis value of the RGP score in the pan-cancer datasets.

3. Results

3.1. Multiple-Pathway-Based stratification of breast cancer

Breast cancer is a heterogeneous disease characterized by dis-
tinct transcriptional patterns, biology, and immune composition
[72–74]. Here, we selected 183 genes from distinct signaling path-
ways based on a literature search related to breast cancer progno-
sis [30–63] (Fig. 1, Supplementary Fig. 1, Supplementary Table 5).
We leveraged data from the TCGA cohort, which included 1,090
patients and offered the most comprehensive clinical annotation
(Supplementary Table 2). Next, we identified 65 genes with prog-
nostic value by univariate Cox regression (p < 0.05) which we ana-
lyzed further (Supplementary Table 6). In addition, the sample
screening process was shown in Supplementary Fig. 2. In collected
cohorts, the clinical information exhibited significant difference in
age, OS time, DFS time, PAM50 subtyes, radiation therapy and
pharmaceutical therapy (Supplementary Figs. 3 and 4, ANOVA test
and Chi-square test, p < 0.001). The models trained and evaluated
based on different clinical patterns would be robust and have a
wide application range.

Several studies have previously identified between two to four
distinct transcriptional subtypes of breast cancer based on analysis
of single pathways [45,52,75–77]. For more refined clustering anal-
ysis, we performed unsupervised k-means consensus clustering of
the TCGA-BRCA cohort using multiple key tumor processes (Sup-
plementary Table 6). The optimal number k of clusters was deter-
mined to be three based on the area under the curve of the
MGS Signature NR Signature DRG Signature HRG Signature

604 ± 0.024# 0.520 ± 0.002* 0.528 ± 0.005* 0.601 ± 0.012
042 0.018 0.029 0.067
648 ± 0.007 0.532 ± 0.017* 0.599 ± 0.033 0.569 ± 0.008*
397 0.010 0.106 0.009
639 ± 0.002* 0.506 ± 0.018* 0.630 ± 0.017* 0.646 ± 0.002
040 0.008 0.037 0.061
530 ± 0.021* 0.486 ± 0.058* 0.588 ± 0.027* 0.602 ± 0.021*
001 0.030 0.043 0.034
446 ± 0.016* 0.483 ± 0.038* 0.677 ± 0.075 0.544 ± 0.026*
002 0.010 0.324 0.003
647 ± 0.007 0.467 ± 0.023* 0.463 ± 0.025* 0.587 ± 0.057
193 0.012 0.009 0.103
634 ± 0.017 0.538 ± 0.029 0.608 ± 0.020 0.586 ± 0.038
158 0.076 0.083 0.151
535 ± 0.061 0.556 ± 0.048 0.564 ± 0.045 0.627 ± 0.059
224 0.350 0.454 0.077
620 ± 0.005* 0.496 ± 0.016* 0.620 ± 0.014 0.622 ± 0.003
033 0.010 0.060 0.056
518 ± 0.001* 0.547 ± 0.015 0.484 ± 0.005* 0.592 ± 0.008
044 0.380 0.008 0.071

ues. p values were obtained by paired t-test comparing the RGP Signature and other
e are significantly higher than values of this labeled signature; #means ROC-AUCs of
.
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Fig. 1. A. Work design. B. Kaplan-Meier for the survival of clusters A, B and C identified in the TCGA-BRCA cohort. C. Expression heat map of 65 prognosis related genes among
cluster A, B and C. The upper part (CD24-XRCC4) shows unfavorable genes with HR > 1; the lower part (ZMYND10-TAPBP) shows favorable genes with HR < 1.
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consensus distribution function (CDF, Supplementary Fig. 5),
including 467 patients in cluster A, 255 patients in cluster B, and
368 patients in cluster C (Fig. 1B). We next examined whether dif-
ferent subtypes were associated with different prognoses and
found that patients in cluster C had a higher survival rate
(Fig. 1B). There was significant distinction existed on the 65 genes
transcriptional profile among three different subtypes (Fig. 1C).
Cluster A was characterized by high expression of unfavorable
prognosis genes and lower favorable prognosis genes; cluster B
exhibited high expression of favorable prognosis genes; cluster C
exhibited significant lower expression of unfavorable prognosis
genes.

To elucidate the transcriptional pathways driving subtypes in
breast cancer, we performed pathway single-sample gene set vari-
ation analysis (GSVA) to identify differentially expressed gene sets
across subtypes (Fig. 2A). Cluster A and cluster B displayed enrich-
ment in pathways associated with cell cycle, mismatch repair, and
DNA replication. Interestingly, cluster B exhibited enrichment in
pathways associated with immune cells (cell adhesion, inflamma-
tion, T cell signaling and NK cell signaling) and immune function
(antigen presentation and interferon-gamma response). Cluster C
was enriched in stromal and carcinogenic activation pathways
such as MAPK, MTOR, and ERBB signaling pathway. All subtypes,
with exception of cluster A, showed enrichment in genes involved
in the apoptosis signaling pathway, which is likely related to
higher survival rates in these clusters.

Cancer genomic instability (GI), somatic copy-number alter-
ations (SCNA) played an important role in increasing the adaptive
potential of the tumors and poor prognosis [78]. The SCNA score as
a representation of the level of SCNA occurring in a tumor was cal-
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culated at three different levels: focal, arm, and chromosome level,
and the overall score calculated from the sum of all three levels
[65,79,80]. We found that tumors from cluster A showed remark-
ably high levels of SCNA and GI (Fig. 2A, Supplementary Table 7).
Altogether these findings highlight the diversity of underlying biol-
ogy and genomic alterations.
3.2. Breast cancer subtypes based on Multiple-Pathway analysis
exhibit distinct immune features

Our findings based on GSVA analyses revealed three subtypes of
breast cancer with distinct levels of immune activation (Fig. 2A). To
further examine the characteristics of the tumor microenviron-
ment (TME) in terms of immune cell infiltration, we performed
ssGSEA on these three subtypes (Fig. 2B). The three subtypes
showed significantly distinct characteristics of cell infiltration in
the tumor microenvironment. Cluster A exhibited an immune-
desert phenotype which was characterized by the suppression of
immunity. Cluster B exhibited an immune-excluded phenotype
which was characterized by activation of different types of
immune cells, including stromal immune cells, such as immuno-
suppressive MDSCs. Cluster C exhibited an immune-inflamed phe-
notype which was characterized by moderate immune activation
(Fig. 2B) and is associated with higher rates of survival (Fig. 1B).
It is noted that there are higher TIL level in Cluster B and Cluster
C, emphasizing that the patients with higher TIL tend to better clin-
ical outcomes, which is coincident with previous studies (Ref: TIL
related papers).

Patients with higher expression of immune checkpoint markers
(such as PDL1) might be more responsive to immunotherapies



Fig. 2. A. The biology behavior and genomic alterations features among three BRCA subtypes. The upper part of the heat map represents the key pathways derived from GSVA
analysis using expression data; the color represents the GSVA score after scaled. The middle part represents the key immune processes derived from the ssGSEA analysis using
expression data; the color represents the ssGSEA score after scale. The lower part represents overall, focal-level and chromosome/arm-level SCNA score which was
downloaded from the previous study with using mutation data and copy-number alteration. B. ssGSEA analysis of three subtypes (Avona test). * p < 0.05, **p < 0.01,
***p < 0.001. C. Expression of hot and cold tumor marker genes in the three subtypes. D. Immunotherapy prediction downloaded from TICA database. The y-axis values
represent mixed score of sensitivity to CTLA4 immunotherapy and sensitivity to PD1 immunotherapy. E. Immunotherapy prediction downloaded from TICA database. The y-
axis values represent mixed score of sensitivity to CTLA4 immunotherapy and insensitivity to PD1 immunotherapy. F. Immunotherapy prediction downloaded from TICA
database. The y-axis values represent mixed score of insensitivity to CTLA4 immunotherapy and sensitivity to PD1 immunotherapy.
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[81]. Therefore, we next examined the expression of immune
checkpoint genes (Supplementary Fig. 6). Of the three clusters,
tumors from cluster A showed the lowest expression of checkpoint
genes, and those from cluster B showed the highest expression of
immune checkpoint markers. Tumors can be categorized into hot
or cold according to their response to immunotherapy[82]. To
investigate which subtype might be more responsive to
immunotherapy, we examined the expression of genes associated
with a hot and cold phenotype in the three subtypes of breast can-
cer (Fig. 2C) and found that cluster A displayed low expression of
genes, while cluster B was characterized by low expression of cold
tumor related genes and high expression of hot tumor related
genes, Tumors in cluster C exhibited moderate expression of both
hot and cold-associated genes.

These findings show that tumors in cluster B exhibit higher
levels of immune cell and immune checkpoint genes, and of genes
associated with a hot tumor phenotype, suggesting that cluster B
tumors might be good candidates for immunotherapy. To test this
hypothesis, we obtained the prediction of immunotherapy effect
among three subtypes of breast cancer (Fig. 2D-F) from TICA data-
base. Consistently with our results, tumors from cluster B were
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more responsive to PD1/CTLA4 therapies, whereas those from clus-
ter A showed were less responsive.
3.3. Subtypes based on Multiple-Pathway analysis show distinct tumor
mutation burden

Gene alterations acquired during tumor evolution can be pre-
dictive of poor outcomes in patients with breast cancer, as well
as resistance to therapy [83]. To better understand the role of
genetic alterations in the three subtypes of breast cancer, we fur-
ther analyzed the distribution differences of somatic mutations.
Cluster B subtype presented with a more extensive tumor muta-
tion burden than cluster A and cluster C (Supplementary Table 9),
with an average mutation rate of top 10 mutations at 17 % (Supple-
mentary Fig. 7B) versus 13.9 % (Supplementary Fig. 7A) and 14.3 %
(Supplementary Fig. 7C), for cluster A and C, respectively. These
findings suggest again that tumors in cluster B might be more
responsive to immunotherapy, given that tumor mutation burden
is associated with immunotherapy response [84]. When selecting
subtype-specific mutated genes, we found that tumors in cluster
A were characterized with high mutation rates of TP53 and GATA3
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(Supplementary Figure 8A), while those in cluster B were charac-
terized by mutations of TP53, PIK3CA and TTN (Supplementary Fig-
ure 8B), and those in cluster C were characterized by mutations of
PIK3CA and CDH1 (Supplementary Figure 8C). Tumors in cluster C
exhibited the lowest mutation rate of TP53, and also had the best
prognosis outcomes of the three subtypes.

Mutational processes help drive tumor evolution and genetic
complexity. Therefore, we next assessed tumor mutational burden
in the three distinct subtypes of breast cancer. Compared with
cluster A and cluster C (Fig. 3A), tumor mutation burden was
Fig. 3. Mutation analysis results in TCGA-BRCA cohort. A. Comparison of tumor mutation
of the CHGB-mutation and the CHGB-wild groups (Log-rank test). C. Kaplan-Meier sur
Kaplan-Meier survival curves of the ZEB1-mutation and ZEB1-wild groups (Log-rank test)
analysis showing the top 100 most frequent mutations in the B subtype. G. GO analysis
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higher in cluster B. Mounting evidence demonstrated that patients
with a high tumor mutation burden presented more durable clin-
ical responses to anti-PD-1/PD-L1 immunotherapy, suggesting
again that tumors cluster B might be more responsive to immune
checkpoint blockade therapies. Pre-clinical studies and clinical tri-
als revealed an association between higher somatic tumor muta-
tion burden, enhanced response with durable clinical benefits to
immune checkpoint blockade therapies, and increased long-term
survival. Considering that tumors in cluster A and cluster C showed
the worst and best prognosis, respectively, and that gene mutation
burden among the three subtypes by Wilcoxon test. B. Kaplan-Meier survival curves
vival curves of the SETDB1-mutation and SETDB1-wild groups (Log-rank test). D.
. E. GO analysis showing the top 100 most frequent mutations in the A subtype. F. GO
showing the top 100 most frequent mutations in the C subtype.
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is related to survival, we analyzed the different mutation rates
between cluster A and cluster C. We identified three genes related
to survival (CHGB, SETDB1 and ZEB1, Fig. 3B-D), which were all
more often mutated in tumors in cluster A.

Mutations can lead to substantial biological changes during
tumorigenesis. Therefore we examined the pathways associated
with the most prominent gene mutations in the distinct subtypes
of breast cancer. We selected the genes which were more often
mutated (in the top 200) in the three distinct subtypes and per-
formed a KEGG analysis for these genes (Fig. 3E-G). Tumors in clus-
ter A were enriched for mutations in Erbb, MAPK, PI3K-Akt, and
EGFR tyrosine kinase inhibitor resistance pathways (Fig. 3E).
Tumors in cluster B exhibited abnormal ECM-receptor interaction
(Fig. 3F), while tumors in cluster C exhibited mutations in ECM-
Fig. 4. A. Kaplan-Meier survival curves of 5 different PAM50 types in the TCGA-BRCA coho
‘‘Number at risk”. B-F. Kaplan-Meier survival curves of different cancer types in the TCGA-
labeled as ‘‘Number at risk”. B. Basal type. C. Her2 type. D. LumA type. E. LumB type. F.
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receptor interaction, PI3K-Akt, EGFR tyrosine kinase inhibitor
resistance, and MAPK signaling pathways (Fig. 3G).

3.4. Drug screening in Multiple-Pathway-Based and PAM50-Based
subtypes

According to the PAM50 subtyping system (Supplementary
Table 10), breast cancer patients can be subdivided into Luminal
A, Luminal B, Her2, Basal, and Normal subtypes. Prognostic analysis
for the PAM50 subtypes revealed that patients who belong to the
Normal subtype have better survival rates initially and but these
quickly decrease at the 10th year (Fig. 4A), similarly to tumors in
the Luminal A (LumA) subtype, whereas tumors in the Basal sub-
type showed an opposite survival trend to those in the Normal sub-
rt (Log-rank test); the number of alive patients is shown in the box below labeled as
BRCA cohort (Log-rank test); the number of alive patients is shown in the box below
Normal type. G. The coefficients of RGP signature.
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type. Tumors in the Her2 and Luminal B (LumB) subtypes had the
worst survival rates before the 10th year. In analyzing the three
subtypes of breast cancer identified in our study (Supplementary
Figure 9), we found that tumors in cluster A were often from the
LumB subtype and less often from the Normal subtype, those in
cluster B were often from the Basal subtype, and those in cluster
C more often from the LumA subtype and less often from the Basal
and Her2 subtypes. Based on the PAM50 subtyping system and our
three subtypes, breast cancer patients can be subdivided into 15
clusters, namely cluster A_Luminal A (AA); cluster B_Luminal A
(BA); cluster C_Luminal A (CA); cluster A_Luminal B (AB); cluster
B_Luminal B (BB); cluster C_Luminal B (CB); cluster A_Basal
(ABa); cluster B_Basal (BBa); cluster C_Basal (CBa); cluster
A_Her2 (AH); cluster B_Her2 (BH); cluster C_Her2 (CH); cluster
A_Normal (AN); cluster B_Normal (BN); and cluster C_Normal
(CN). Interestingly, the Normal, LumA and LumB subtypes in clus-
ter A (AN, AA, AB) had worse prognoses than those subtypes in
cluster B and cluster C (Fig. 4D-F, p < 0.05), confirming the prognos-
tic value of our 3 subtypes for patients with breast cancer.

Our results showed that PAM50 subtyping (LumA, LumB, Basal,
Her2 and Normal subtype) was associated with distinct survival
among our identified three subtypes of breast cancer. We then fur-
ther investigated potential drug treatments for the 15 subtypes of
cancer (AA, BA, CA, AB, BB, CB, ABa, BBa, CBa, AH, BH, CH, AN, BN,
and CN) using CMPA. Connectivity Map (CMAP) is a computational
biology screening strategy previously shown to be effective in
advancing anti-obesity therapies based on gene signature-based
drug screening [85]. Promising candidate drugs should revert the
gene signature of the disease of interest compared with controls.
Furthermore, the CMAP version2 named L1000 expanded the scope
of screening. First, we identified DEGs by comparing transcrip-
tional changes between normal breast samples and the distinct
15 subtypes of breast cancer samples. Then, hub genes were
screened using Protein-Protein network (PPI) analysis (Supple-
mentary Tables 11 and 12). The hub genes were used as input to
predict drugs that can reverse the expression data from a subtype
state to a control state. The drugs with CMap connectivity (tau)
score [28] <�0.9 were selected and regarded as effective drugs
for this specific breast cancer subtype. Considering the drugs can
be used clinically, we then focused on the FDA-approved drugs
for breast cancer and the drugs information was listed in Supple-
mentary Table 13. Different drugs were identified for each subtype
of breast cancer, further suggesting that each subtype of breast
cancer has its unique genomic feature.

3.5. Construction of a prognostic robust gene pair (RGP) score for
breast cancer

We next explored whether our identified 65 genes with the
potential prognostic value to predict prognosis in the pan cancer
datasets. Indeed, our analysis indicates that these genes are associ-
ated with the patient’s survival (p < 0.05, Log-rank test, Supple-
mentary Figure 10).

The 65 prognostic genes were then used for gene pairing (Sup-
plementary Fig. 1), resulting in a total of 2,080 (65*64/2) gene-
pairs, 891 of which have a frequency of ‘‘gene A > gene B expres-
sion” between 10 % and 90 % in the TCGA-BRCA cohort (training
set), and were therefore considered to provide sufficient informa-
tion to be included in the model (Supplementary Fig. 1). By uni-
variate Cox regression (p < 0.001) and LASSO regression
(Supplementary Figure 11), we then selected 34 gene-pairs. Finally,
using multivariate Cox regression, we identified 16 gene-pairs that
were associated with survival differences (Supplementary
Table 14); these gene pairs include 10 risk factors (HR greater
than 1, Fig. 4G) and 6 protective factors (HR < 1, Fig. 4G). The
RGP score was calculated as below:
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Sum ¼0:599� EPB41L4B TANKþ 0:363� EPB41L4Bj jCXCL13
þ 0:327� RPA3 TAPBPLþ 0:456� RPA3j jBRD4
� 0:638� TNFRSF14 NUP43þ 0:332� HDAC2j jBCL2
� 0:735� FLT3 POP1þ 0:652� CACNA1Hj jMAK
þ 0:567� CACNA1H PARP12� 0:533� CLOCKj jPARP3
þ 0:656�WT1 ZNF219þ 0:418� SCG2jMAKj
þ0:437� SCG2jZNF219� 0:481� SERPINA1jADAM9
� 0:798� PARP3jXRCC4� 0:295� SIAH2jADAM9 ð1Þ

RGP score ¼ eSum ð2Þ
The detailed coefficients of the RGP score are shown in Supple-

mentary Table 5. To investigate the prognostic performance of the
16 gene-pair RGP score, we applied it to ten independent breast
cancer patient cohorts, i.e cohorts that had not been used in the
construction of the RGP score (Supplementary Table 1). Differences
in survival time, including overall survival time (OS), disease-free
survival time (DFS), relapse-free survival time (RFS), and distant
metastasis-free survival time (DMFS) were observed among the
different cohorts. We used the median value of each breast cancer
cohort as the cutoff to distinguish high from low-risk groups. Nota-
bly, despite the heterogeneity of the disease and cohort differences
in terms of patient characteristics, follow-up times and transcrip-
tomic platforms, the unified RGP score held value in distinguishing
patient survival status of the patients across breast cancer cohorts
(p < 0.05, Log-rank test, Fig. 5). Indeed, the high risk group was
associated with a worse prognosis in all of the cohorts (Fig. 5).

3.6. Evaluation of the RGP score

To confirm the robustness of the paired RGP score, we com-
pared its performance against six other existing prognostic signa-
tures in breast cancer (ARG; FRG; MMGS; NR; DRG; and HRG
signatures) [41,42,49,50,55,60] using AUC-ROC analyses (Supple-
mentary Figure 12 and Supplementary Figure 13). The t-paired test
was used to perform the comparison. These results (Table 1)
showed that paired RGP score provided a robust and overall the
most accurate prognostic risk score for breast cancer patients
(Table 1).

We further performed pan-cancer analysis using survival infor-
mation of 33 types of cancers in TCGA, including 2 hematological
cancers and 31 solid tumors. The RGP score showed significant
prognostic value in 12 different types of cancer (p < 0.05, Wald’s
test, Fig. 6A) using Cox regression. Kaplan-Meier survival analysis
indicated that the RGP score had significant prognostic survival
value in seven types of cancer (p < 0.05, Log-rank test, Fig. 5A
and Fig. 6B-G).

3.7. Construction and validation of a nomogram based on the RGP
score

To design the RGP score easy to use, a nomogram including dif-
ferent types of clinical information was constructed in the METAB-
RIC. The METABRIC cohort was randomly divided into a training
(n = 1,132, Supplementary Fig. 1) and a testing set (n = 567, Supple-
mentary Fig. 1). We first performed the univariate independent
analysis in the training set based on the RGP score and other clin-
ical information, namely PAM50 (containing five factors), Notting-
ham Prognostic Index (NPI), and age (Fig. 7A). We retrieved six
significant factors (Fig. 7A) which were then used to perform mul-
tivariate independent prognostic analysis in the training set to
eliminate correlations among factors. Then we got four significant
factors (Fig. 7B) which we used to construct a nomogram (Fig. 7C).

To evaluate the nomogram, we predicted the survival state of
patients 3-,5- and 7- time points and drew related ROC and calibra-



Fig. 5. Kaplan-Meier survival curves of the RGP signature in training and 10 test sets (Log-rank test); the number of alive patients is shown in the box below labeled as
‘‘Number at risk”. A. TCGA-BRCA cohort (training set). B. METABRIC cohort. C. GSE20685. D.GSE21653. E. GSE17705. F. GSE11121. G. GSE7390. H. GSE20711. I. GSE1456. J.
GSE31448. K. GSE4922.
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tion curves in both the training and test sets (Fig. 7D-G). The aver-
age ROC-AUCs were greater than 0.6. When only considering ROC
corves, there was some overfitting in the training set, however,
when considering calibration curves, we achieved high accuracy
in both sets suggesting the robustness of the nomogram.

Our clustering prediction, recommended drugs and nomogram
are available using a web-app (https://sujiezhulab.shinyapps.io/
BRCA/).

4. Discussion

Despite recent improvement in the outcome of patients with
breast cancer, most patients with advanced disease are at a higher
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risk of relapse and distant metastasis, and therefore high mortality
[86,87]. Traditional classification systems and current prognostic
prediction markers fail to accurately reflect the biological hetero-
geneity and clinical complexity of breast cancer. Here, we
identify-three novel molecular subtypes of breast cancer that
reflect disease heterogeneity and can help guide the clinical man-
agement of the disease. Our web-tool presents a tool with predic-
tive value for different subtypes of breast cancer and patient
treatment; implementation of the RGP score and nomogram pro-
vides an easy-to-use risk score for breast cancer patients.

The three subtypes we identified exhibited significantly differ-
ent types of tumor microenvironment cell infiltrations. Cluster A
was characterized by the suppression of immunity; cluster B was

https://sujiezhulab.shinyapps.io/BRCA/
https://sujiezhulab.shinyapps.io/BRCA/


Fig. 6. Pan-cancer analysis of the RGP score. A. Cox regression analysis of the RGP score across 33 cancer types. The red color indicates significant results. B-G. Kaplan-Meier
survival curves of the RGP signature in 6 types of cancers (Log-rank test). B. TCGA-BLCA cohort. C.TCGA-CESC cohort. D. TCGA-HNSC cohort. E. TCGA-LGG cohort. F. TCGA-
LUAD cohort. G. TCGA-UCEC cohort. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Nomogram generation and validation in the METABRIC set. A. Univariate independent prognostic analysis. The red color indicates significant results. B. Multivariate
independent prognostic analysis. The red color indicates significant results. C. A 4-factor nomogram containing the RGP score. D. ROC curves of the nomogram in the
METABRIC training set. E. ROC curves of the nomogram in the METABRIC test set. F. Calibration curves of the nomogram in the METABRIC training set. G. Calibration curves of
the nomogram in the METABRIC test set. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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characterized by activation of immune cells; cluster C was charac-
terized by activation of adaptive immunity. Although previous
studies suggested that the immune-excluded phenotype could be
regarded as the non-inflamed tumor and the immune-inflamed
phenotype might be regarded as the hot tumor, we found that
tumors in cluster B were characterized by low expression of cold
tumor marked genes and high expression of hot tumor genes. Fur-
thermore, tumors in cluster B had higher scores in terms of
immunotherapy response.
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In this study, three novel subtypes had distinct survival in
PAM50 subtypes, which indicted that the detailed subtype is nec-
essary for patients to improve treatment and prognosis. Combined
with PAM50, BRCA was subdivided into 15 subtypes, which has
distinct survival. Given that tumor subtypes based on the PAM50
classifier have distinct prognoses, and respond differently to sys-
temic therapy, we provided a new insight of therapy for 15 sub-
types that we constructed. Screening drugs based on gene
expression has proven effective, therefore, we have used applied
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this approach to the 15 subtypes of breast cancer. Taking into
account the safety of the drug, we focused on drugs that had been
approved by FDA for patients with breast cancer. This list of drugs
included targeted drugs and chemotherapy agents, serving as a
reasonable reference for clinicians.

Although several prognostic models of breast cancer have been
previously constructed, they have not been sufficiently robust to
have clinical value. Therefore, we established a web tool based
on RGP score. This web-tool included the precision subtypes, treat-
ment and prognosis for patients with breast cancer. To the best of
our knowledge, this is the first web app for breast cancer that
simultaneously considers two key questions including treatment
and prognosis. Using 10 independent breast cancer cohorts, and
show it can predict the prognosis in more robust and accurate
ways than other existing signatures. Our RGP score also effectively
eliminated batch effects between different patient cohorts and
data sets, and was shown to be an independent prognostic factor
in patients with breast cancer, unexpectedly also holding prognos-
tic value in the pan-cancer datasets.

Some genes involved in the RGP score are related to breast can-
cer, such as HDAC2 and PARP3, and the former codes for a protein
belonging to the histone deacetylase family. This protein forms
transcriptional repressor complexes by associating with many
other proteins, which plays an important role in transcription as
well as drug resistance (). Notably, HDAC inhibitors are potential
regents to overcome chemotherapeutic resistance [88]. Further-
more, recent study showed that HDAC2 promotes IFNc-induced
PDL1 expression, and targeting the HDAC2 may enhance antitumor
immunity in triple-negative breast cancer (TNBC) [89]. PAPR3
codes the protein that is a member of PAPR family, which is
required for the DNA repair, regulation of apoptosis, and mainte-
nance of genomic stability [90]. It is shown that PARP3 knockdown
reduces the survival of BRCA1-deficient TNBC cells, and PAPR3
inhibition is a promising strategy for BRCA1-deficient tumors [91].

Our work also has some limitations. Cancer is a very heteroge-
neous disease in molecular terms, and cancer development
involves multiple signaling pathways rather than single pathway
genes. Our findings provide new opportunities for identifying
breast cancer subtypes, which can potentially be generalizable to
other cancers but it still need further investigation and validation.
Although L1000 has shown a strong predictive value of drugs on
gene expression, these need to be further validated before they
can be used in a clinical setting. Another limitation is that all the
analyses were based on public datasets. Future studies are needed
to examine the accuracy of our predictions for potential drugs for
the distinct subtypes and the RGP score to predict survival.

5. Conclusion

In conclusion, our study leveraged multiple omics data to iden-
tify distinct molecular breast cancer subtypes with unique behav-
ior and clinical traits. Novel treatment strategies that are subtype-
specific are recommended for patients with breast cancer. A robust
prognosis model, RGP score, was developed too. And our web-tool
can help promote personalized therapi.
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