437 research outputs found

    Boundary effect and dressed states of a giant atom in a topological waveguide

    Full text link
    The interaction between the quantum emitter and topological photonic system makes the photon behave in exotic ways. We here study the properties of a giant atom coupled to two sites of a one-dimensional topological waveguide, which is described by the Su-Schrieffer-Heeger (SSH) chain. We find that the giant atom can act as an effective boundary and induce the chiral zero modes, which are similar to those in the SSH model with open boundary, for the waveguide under the periodical boundary. Except for the boundary effect, we also find that the giant atom can lift energy degeneracy inside the energy bands of the SSH chain and adjust spatial symmetry of the photon distributions for the states of the dressed giant atom and waveguide. That is, the giant atom can be used to change the properties of the topological environment. Our work may stimulate more studies on the interaction between matter and topological environment.Comment: 7 Pages, 4 Figure

    DILF: Differentiable Rendering-Based Multi-View Image-Language Fusion for Zero-Shot 3D Shape Understanding

    Get PDF
    Zero-shot 3D shape understanding aims to recognize “unseen” 3D categories that are not present in training data. Recently, Contrastive Language–Image Pre-training (CLIP) has shown promising open-world performance in zero-shot 3D shape understanding tasks by information fusion among language and 3D modality. It first renders 3D objects into multiple 2D image views and then learns to understand the semantic relationships between the textual descriptions and images, enabling the model to generalize to new and unseen categories. However, existing studies in zero-shot 3D shape understanding rely on predefined rendering parameters, resulting in repetitive, redundant, and low-quality views. This limitation hinders the model’s ability to fully comprehend 3D shapes and adversely impacts the text–image fusion in a shared latent space. To this end, we propose a novel approach called Differentiable rendering-based multi-view Image–Language Fusion (DILF) for zero-shot 3D shape understanding. Specifically, DILF leverages large-scale language models (LLMs) to generate textual prompts enriched with 3D semantics and designs a differentiable renderer with learnable rendering parameters to produce representative multi-view images. These rendering parameters can be iteratively updated using a text–image fusion loss, which aids in parameters’ regression, allowing the model to determine the optimal viewpoint positions for each 3D object. Then a group-view mechanism is introduced to model interdependencies across views, enabling efficient information fusion to achieve a more comprehensive 3D shape understanding. Experimental results can demonstrate that DILF outperforms state-of-the-art methods for zero-shot 3D classification while maintaining competitive performance for standard 3D classification. The code is available at https://github.com/yuzaiyang123/DILP

    Experimental preparation and verification of quantum money

    Full text link
    A quantum money scheme enables a trusted bank to provide untrusted users with verifiable quantum banknotes that cannot be forged. In this work, we report an experimental demonstration of the preparation and verification of unforgeable quantum banknotes. We employ a security analysis that takes experimental imperfections fully into account. We measure a total of 3.6×1063.6\times 10^6 states in one verification round, limiting the forging probability to 10710^{-7} based on the security analysis. Our results demonstrate the feasibility of preparing and verifying quantum banknotes using currently available experimental techniques.Comment: 12 pages, 4 figure

    A Neural-Guided Dynamic Symbolic Network for Exploring Mathematical Expressions from Data

    Full text link
    Symbolic regression (SR) is a powerful technique for discovering the underlying mathematical expressions from observed data. Inspired by the success of deep learning, recent efforts have focused on two categories for SR methods. One is using a neural network or genetic programming to search the expression tree directly. Although this has shown promising results, the large search space poses difficulties in learning constant factors and processing high-dimensional problems. Another approach is leveraging a transformer-based model training on synthetic data and offers advantages in inference speed. However, this method is limited to fixed small numbers of dimensions and may encounter inference problems when given data is out-of-distribution compared to the synthetic data. In this work, we propose DySymNet, a novel neural-guided Dynamic Symbolic Network for SR. Instead of searching for expressions within a large search space, we explore DySymNet with various structures and optimize them to identify expressions that better-fitting the data. With a topology structure like neural networks, DySymNet not only tackles the challenge of high-dimensional problems but also proves effective in optimizing constants. Based on extensive numerical experiments using low-dimensional public standard benchmarks and the well-known SRBench with more variables, our method achieves state-of-the-art performance in terms of fitting accuracy and robustness to noise

    Context-Aware Sparse Deep Coordination Graphs

    Full text link
    Learning sparse coordination graphs adaptive to the coordination dynamics among agents is a long-standing problem in cooperative multi-agent learning. This paper studies this problem and proposes a novel method using the variance of payoff functions to construct context-aware sparse coordination topologies. We theoretically consolidate our method by proving that the smaller the variance of payoff functions is, the less likely action selection will change after removing the corresponding edge. Moreover, we propose to learn action representations to effectively reduce the influence of payoff functions' estimation errors on graph construction. To empirically evaluate our method, we present the Multi-Agent COordination (MACO) benchmark by collecting classic coordination problems in the literature, increasing their difficulty, and classifying them into different types. We carry out a case study and experiments on the MACO and StarCraft II micromanagement benchmark to demonstrate the dynamics of sparse graph learning, the influence of graph sparseness, and the learning performance of our method
    corecore