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A B S T R A C T

Zero-shot 3D shape understanding aims to recognize ‘‘unseen’’ 3D categories that are not present in training
data. Recently, Contrastive Language–Image Pre-training (CLIP) has shown promising open-world performance
in zero-shot 3D shape understanding tasks by information fusion among language and 3D modality. It first
renders 3D objects into multiple 2D image views and then learns to understand the semantic relationships
between the textual descriptions and images, enabling the model to generalize to new and unseen categories.
However, existing studies in zero-shot 3D shape understanding rely on predefined rendering parameters,
resulting in repetitive, redundant, and low-quality views. This limitation hinders the model’s ability to fully
comprehend 3D shapes and adversely impacts the text–image fusion in a shared latent space. To this end, we
propose a novel approach called Differentiable rendering-based multi-view Image–Language Fusion (DILF) for
zero-shot 3D shape understanding. Specifically, DILF leverages large-scale language models (LLMs) to generate
textual prompts enriched with 3D semantics and designs a differentiable renderer with learnable rendering
parameters to produce representative multi-view images. These rendering parameters can be iteratively
updated using a text–image fusion loss, which aids in parameters’ regression, allowing the model to determine
the optimal viewpoint positions for each 3D object. Then a group-view mechanism is introduced to model
interdependencies across views, enabling efficient information fusion to achieve a more comprehensive 3D
shape understanding. Experimental results can demonstrate that DILF outperforms state-of-the-art methods for
zero-shot 3D classification while maintaining competitive performance for standard 3D classification. The code
is available at https://github.com/yuzaiyang123/DILP.

1. Introduction

Three-dimensional (3D) shape understanding is a critical task in the
field of computer vision and pattern recognition. It involves analyzing
the geometric structure and spatial relationships of 3D data, which can
be represented as point clouds, meshes, or volumetric data (voxels).
The objective of this task is to classify or categorize 3D objects based
on their shapes, distinguishing them by distinct features and charac-
teristics [1]. Applications of 3D shape understanding are diverse and
widespread across various fields, such as autonomous driving, robotics,
virtual reality, and environmental monitoring.

3D shape understanding encompasses both standard 3D shape un-
derstanding and zero-shot 3D shape understanding. For standard 3D
understanding, there are two main strategies: the point-based strategy
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(P. Tiwari).
1 Equal contribution.

and the view-based strategy [2]. The point-based strategy involves
directly defining a network on available raw point clouds or meshes
of 3D objects, and then leveraging the defined point-based network to
learn representations from the point clouds. On the other hand, the
view-based strategy renders 3D objects into multiple 2D views from
different perspectives and then employs a 2D-based architecture to
extract semantic representations from these views [3]. While both of
them can achieve impressive results on seen 3D object categories during
training with available labeled 3D modality data [4], they often face
challenges when it comes to unseen categories in zero-shot settings.
That is because the intricate details and complexities of unseen 3D
categories are hard to capture from either point clouds or multi-view
images alone [5], making the models unable to generalize effectively
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Fig. 1. The comparison of predefined rendering and differentiable rendering. Previous zero-shot 3D classification methods (Left, Middle) rely on predefined viewpoint positions
for rendering multi-view images of 3D objects. However, the predefined viewpoint positions result in redundant and repetitive multi-view images (red, green, and yellow box).
In contrast, DILF can introduce a differentiable rendering module (Right) that predicts optimal viewpoints in a data-driven manner. Therefore, this differentiable rendering process
allows DILF to generate multi-view images that are more semantically representative.

to unseen categories. Inspired by this, incorporating knowledge from
other modalities, such as language, can be a powerful and straight-
forward approach to overcoming the challenges in zero-shot 3D shape
classification [6]. By fusing the information from multiple modalities,
the model can gain a more comprehensive understanding of 3D objects
and improve its ability to classify unseen categories effectively.

The language modality can provide valuable complementary in-
formation to the 3D modality [7]. By using text prompts to describe
3D scenes from a macroscopic perspective [8], the language modality
can help the network achieve a more comprehensive understanding
of unseen 3D categories in zero-shot learning scenarios [9]. Recent
research has shown the potential of integrating language information
into zero-shot learning through an ‘‘information fusion’’ strategy, where
both the language and 3D modalities are combined to enhance the
overall interpretation of the data. OpenAI’s Contrastive Learning In
Pretraining (CLIP) is a notable example [10], which bridges the domain
gap between vision and language modalities by utilizing pre-trained
text and image correlations to enable open-vocabulary recognition
between the two modalities. A few extensions of CLIP have been
proposed to handle the challenges in zero-shot 3D classification. For
instance, PointCLIP [11] designs an inter-view adapter that utilizes
text prompts to enhance the understanding of 3D multi-view images.
Another method, ULIP [12] learns a unified representation of 2D RGB
images, texts, and 3D point clouds by pre-training with object triplets
from the three modalities. The previous methods demonstrate that the
language modality can supplement extra information for unseen 3D
categories, enhancing the potential of integrating the CLIP model in
handling zero-shot 3D classification.

While applying CLIP to zero-shot 3D classification tasks shows
promise, its success relies on the quality of rendered multi-view im-
ages since it can influence the effectiveness of the text–image fusion
process. For effective zero-shot 3D classification, the model needs to
understand and recognize 3D shapes from different viewpoints without
direct training on these specific views. This requires having accurate
and informative multi-view representations of the 3D objects. However,
the exploration of a suitable rendering configuration for rendering
optimal multi-view images has been lacking in previous works [6,11–
13]. As shown in Fig. 1, predefined rendering configurations may not
adequately capture the variations and complexities present in the 3D
shapes, leading to the limited coverage of viewpoints and potentially
missing important details. On the other hand, most previous CLIP-based
methods treat all views equally to generate the shape descriptors, which
neglects the essential role that the content relationship and discrim-
inative information among the views play in understanding the 3D
modality. Additionally, they mainly adopt CLIP 2D prompt structure,
e.g., ‘‘a photo of a [CLASS]’’, and append elementary domain-
specific terms, such as ‘‘3D object’’. Nevertheless, these methods

confront the challenge of Naive Textual Prompting (NTP), in which
the simplistic textual prompt fails to represent 3D shapes adequately
and adversely affects the pre-trained language–image fusion in the
embedding space [13].

To address these limitations, we propose Differentiable rendering-
based multi-view Image–Language Fusion (DILF), as shown in Fig. 2.
DILF consists of three modules. (1) To produce informative multi-view
images, DILF employs a differentiable renderer to iteratively update
the rendering parameters, enabling end-to-end training of the zero-shot
3D classification task. DILF allows the language modality to supply
additional information for the 3D modality, enabling the selection of
appropriate rendering viewpoints under the guidance of the language
prompts, as shown in Fig. 3(a). (2) To mine the content relationship
and discriminative information among the multi-view images, a group-
view mechanism is introduced into DILF for enhancing the network’s
ability to model complex interdependencies among these views, as
shown in Fig. 3(b). (3) Motivated by automatic prompt designs [13],
DILF proposes the large-scale language model LLM-assisted textual
feature learning which leverages the descriptive capabilities of LLMs to
generate 3D-specific prompts enriched with 3D semantics to overcome
the NTP challenge, as shown in Fig. 2(a). The contributions of this study
can be summarized as follows:

(1) We propose a novel approach called Differentiable rendering-
based multi-view Image–Language Fusion (DILF) for zero-shot
3D shape understanding. DILF combines Differentiable Render-
ing (DR) with language prompts to generate multi-view images
with more comprehensive information. It enables the iterative
optimization of viewpoint selection by fusion among 3D and
language modalities. This approach integrates the principles of
DR, allowing the network to refine the rendering process under
the explicit guidance of language descriptions.

(2) For accurate text–image fusion, DILF introduces the group-view
mechanism and LLM-assisted textual feature learning to bridge
the domain gap. The group-view mechanism aims at modeling in-
terdependencies across views, enabling a more comprehensive 3D
shape understanding. The LLM-assisted textual feature learning
utilizes the descriptive capabilities of LLMs, enabling a com-
prehensive interpretation of 3D objects. A 3D object includes
its 3D and language modality, the group-view mechanism and
LLM-assisted textual feature learning aim at making a complete
interpretation of the 3D object at different levels and therefore
facilitating accurate text–image fusion.

(3) We conduct comprehensive experiments on ModelNet40 and
ScanObjectNN datasets, evaluating DILF’s performance on two 3D
tasks: zero-shot 3D classification and standard 3D classification.
The experimental results indicate that DILF exhibits superior
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performance in comparison to state-of-the-art (SOTA) for zero-
shot 3D classification while maintaining competitive performance
for standard 3D classification. The superior results validate the
effectiveness of DILF for achieving accurate and comprehensive
3D shape understanding.

The remainder of this paper is organized as follows. Section 2 intro-
duces related works. Section 3 presents the proposed DILF approach.
Section 4 shows the related experiment results and analyses. Finally,
we conclude the whole paper and direct our future research.

2. Related work

2.1. Standard 3D shape understanding

The research on 3D shape understanding can be broadly categorized
into two main streams: point-based methods and view-based methods.
The point-based methods involve defining the network directly on a
point cloud or mesh representation of a 3D object. PointNet [14] and
its variants [15–19] are examples of point-based networks used to
learn representations from point clouds. These methods operate directly
on the raw point data and have shown effectiveness in certain 3D
tasks. The view-based methods, on the other hand, generate multiple
views of a given 3D model by rendering the object from different
viewpoints, resulting in multi-view images. These images are then used
to solve downstream tasks such as 3D classification and segmenta-
tion. View-based methods have achieved state-of-the-art performance
in these tasks [20]. Among these view-based researches, Wei et al. [2]
claimed that view-based methods are effective at revealing the essential
structure and contour changes of 3D objects. Su et al. [21] suggested
that view-based methods align with how the human brain associates
2D appearances with prior knowledge of a 3D shape, which could
contribute to their superior performance. Qi et al. [3] argued that
view-based methods can complement each other’s detailed features
from multi-view images by setting different rendering viewpoints and
thereby providing a complete interpretation of an occluded object.

The 3D multi-view images can accurately capture the characteristics
of non-rigid 3D objects, providing a robust depiction of their geometry
and structure [3]. Consequently, DILF employs a view-based approach
to extract representations from 3D models. The difference between DILF
and prior 3D shape understanding methods lies in DILF’s fusion of
language modality knowledge, which offers an additional complement
to 3D modality. This is attributed to the fact that multimodal learn-
ing facilitates the acquisition of cross-modality information about 3D
objects, enabling a comprehensive interpretation of these objects [22].
Meanwhile, a few view-based methods [2,23] have explored the posi-
tion of viewpoint for rendering optimal multi-view images. However,
these previous methods rely on predefined configurations for rendering
3D objects, resulting in limited success and requiring an elaborate
training process [20]. The difference between DILF and these previous
methods is that DILF iteratively adjusts the rendering configuration
by fusing explicit text guidance into the rendering process, thereby
obtaining multi-view images that are more semantically representative
in a data-driven manner.

2.2. The extension of CLIP in zero-shot 3D shape understanding

CLIP is a type of pretraining that uses contrastive learning to learn
representations from large-scale image–text pairs [24]. CLIP bridges
the gap between the language and image modalities, enabling it to
capture rich semantic relationships between them [25]. The efficiency
of the CLIP in understanding 3D scenes has been validated through
various applications, such as 3D object generation [26–28], 3D recog-
nition [29,30], and 3D editing [31,32]. Recently, there have been
several attempts to extend the application of CLIP to the task of zero-
shot 3D shape understanding. Among these attempts, PointCLIP [11,

13] combines visual and textual information to achieve cross-modal
language–image embedding, while ULIP [6,12] employs large multi-
modal models to generate detailed language descriptions of 3D objects,
addressing limitations in existing 3D object datasets regarding the qual-
ity and scalability of language descriptions. These methods demonstrate
the effectiveness of extending the CLIP-based strategy in zero-shot 3D
shape understanding.

The common point between previous CLIP-based methods and DILF
lies in their fusion of language modality into zero-shot learning to
enhance the understanding of 3D objects. The distinction lies in the fact
that previous CLIP-based methods either render multi-view images by
setting a virtual camera by 30◦ interval [6,12] or project the point cloud
from 6 orthogonal views [11,13]. However, these rendering strategies
rely on the assumption of homogeneous space (e.g., icosahedron) for
predefining view configurations, resulting in leading to redundant and
repetitive views [2]. In contrast to previous methods, DILF regresses
suitable viewpoints with a differentiable renderer under the supervi-
sion of language modality. Consequently, this allows DILF to learn
semantically representative views in a data-driven manner.

2.3. Differentiable Rendering (DR)

The paradigm of perception by predicting the optimal environment
parameters that generated the rendering image is called Differentiable
Rendering (DR) [33]. In the context of DR, appropriate viewpoint
positions, lighting, and other physical properties serve as latent vari-
ables, which can be inferred to comprehend 3D scenes [34]. Recent
DR approaches focus on making the graphics operations differentiable,
allowing gradients to flow from the image to the rendering param-
eters directly [20]. Among these approaches, Abdullah et al. [20]
introduce the Multi-View Transformation Network (MVTN) that re-
gresses optimal viewpoints for 3D shape recognition, building upon
advances in differentiable rendering. Tulsiani et al. [35] proposes
Factored 3D Representation Learning(F3DRL) for learning disentangled
3D object representations by factorizing object shape, appearance, and
viewpoint. Liu et al. [36] introduces a differentiable renderer that
enables gradient-based optimization for 3D object understanding tasks.
Previous research confirms that DR facilitates the examination of 3D
objects from appropriate viewpoints, thereby offering a comprehensive
interpretation of the 3D object.

The method most closely related to our work is MVTN [20]. In
contrast to the previous work, the MVTN employs the labels of 3D shape
categories to implicitly regress optimal viewpoints, whereas DILF lever-
ages language information as explicit guidance for iteratively updating
rendering parameters. Recent studies [7–9] have demonstrated the
potential of fusing language modality as a supplementary component
to the 3D modality. Consequently, fusing language modality in DR
processing enables a more comprehensive interpretation of 3D objects.

3. Proposed method

Our proposed DILF approach consists of two training stages. (1) Dif-
ferentiable rendering-based multi-view Image–Language Fusion (DILF)
(Section 3.1), which utilizes language prompts as supervisory signals,
and iteratively selects appropriate rendering parameters via a differ-
entiable renderer. (2) DILF for 3D classification (Section 3.2), which
contains two downstream tasks, namely zero-shot 3D classification and
standard 3D classification.

3.1. Differentiable rendering-based multi-view Image–Language Fusion
(DILF)

The DILF algorithm consists of three modules: (1) LLM-assisted tex-
tual feature learning (Section 3.1.1), which utilizes large-scale language
models, i.e. GPT-3 [37], to generate language prompts that are rich



Information Fusion 102 (2024) 102033

4

X. Ning et al.

Fig. 2. The DILF network architecture. DILF employs a differentiable renderer that fuses explicit text guidance into the rendering process to produce informative multi-view images.
DILF comprises three major components. (1) The large-scale language models (LLMs) are utilized to generate 3D-specific prompts (𝐶) enriched with 3D semantics derived from
the input language commands (𝐿). (2) Viewpoint position learning (𝐸𝑉 ) is utilized to learn the scene parameters (𝑢) from the input 3D object, and then a differentiable renderer
(𝑅) is utilized to generate the multi-view images (𝑀) based on the 𝑢. (3) The group-view mechanism (𝐸𝐺) is adopted to mine the interdependencies among 𝑀 , and to fuse 𝑀
into a unified feature space. The snowflake represents the freeze of the model weights, while the flame denotes iterative the model weights.

in 3D semantics. (2) Visual feature learning via differentiable ren-
derer (Section 3.1.2), where the viewpoint position learning network
is employed to estimate optimal scene parameters for rendering multi-
view images. Subsequently, the group-view mechanism combines the
multi-view images into a unified representation space. (3) Fusion loss
(Section 3.1.3) uses language prompts as supervisory signals to select
suitable rendering parameters in a data-driven manner. By pre-training
on tuples from both modalities, a unified representation space for in-
formation fusion among multi-view images and language is established.
The network structure of DILF is illustrated in Fig. 2.

3.1.1. LLM-assisted textual feature learning
In this section, we leverage the descriptive capabilities of LLMs to

generate 3D-specific prompts 𝐶𝑖 enriched with 3D semantics derived
from the input language commands 𝐿𝑖. Specifically, the LLMs are
utilized to convert language commands 𝐿𝑖 into 3D-Specific prompts 𝐶𝑖,
and then the textual features 𝑇𝑖 are extracted from 3D-Specific prompts
𝐶𝑖 via a pre-trained text encoder 𝐸𝑇 .

We leverage the GPT-3 [37] to convert language commands 𝐿𝑖
into 3D-Specific prompts 𝐶𝑖. e.g., Input: ‘‘Describe the shape of
a 3D [plane] when rendering it.’’; Output: ‘‘Aerodynamic
design with plane wings, tail, and fuselage depicted
in 3D space’’. By doing so, the representative character of the 3D
target is fully described, making the textual prompt of the 3D target
more complete and comprehensive. The transformation of the language
commands 𝐿𝑖 into 3D-Specific prompts 𝐶𝑖 is formulated as:

𝐶𝑖 = 𝐿𝐿𝑀𝑠
(

𝐿𝑖
)

. (1)

After that, DILF leverages the pre-trained vision-language model
SLIP [38](𝐸𝑇 ) to extract textual features 𝑇𝑖 from language commands
𝐶𝑖. The extraction of the textual features 𝑇𝑖 is formulated as:

𝑇𝑖 = 𝐸𝑇
(

𝐶𝑖
)

. (2)

After the LLM-assisted textual feature learning, the language com-
mands 𝐿𝑖 are transformed into textual features 𝑇𝑖, providing a feature
representation of the language modality for subsequent multi-view
image–language fusion.

3.1.2. Visual feature learning via differentiable rendering
This section demonstrates the data flow of visual feature extrac-

tion, as shown in Fig. 3. The viewpoint position learning network 𝐸𝑉
learns scene parameters 𝑢 from the input 3D object 𝑆. Subsequently,
a differentiable renderer 𝑅 generates multi-view images 𝑀 based on
the scene parameters 𝑢. The multi-view features 𝑓 𝑖

𝑜𝑟𝑖 are then extracted

from the multi-view images 𝑀𝑖 using a pre-trained image encoder 𝐸𝐼 .
Finally, the group-view mechanism 𝐸𝐺 is utilized to obtain the global
multi-view feature 𝑃 by fusing the multi-view features 𝑓 𝑖

𝑜𝑟𝑖.

Differentiable renderer . The differentiable renderer 𝑅 allows gradi-
ents to flow from the loss of image–text alignment to the scene param-
eters 𝑢, and therefore enables obtaining suitable viewpoint position in
a data-driven manner. The viewpoint position layer 𝐸𝑉 is utilized to
calculate the scene parameters from the 3D object 𝑆:

𝑢 = 𝐸𝑉 (𝑆) . (3)

The scene parameters 𝑢 contain azimuth angles 𝑢𝑎 and elevation
angles 𝑢𝑒 of each rendering camera. Azimuth and elevation angles are
used in 3D rendering to describe the position of a rendering camera in
a spherical coordinate system [39], as shown in Fig. 4. The azimuth
angles 𝑢𝑎 and elevation angles 𝑢𝑒 are formulated as:

𝑢𝑎 = 𝑢𝑏𝑜𝑢𝑛𝑑 ⋅ | tanh (𝐶ℎ𝑢𝑛𝑘 (𝑢, 2) [0]) |, (4)

𝑢𝑒 = 𝑢𝑏𝑜𝑢𝑛𝑑 ⋅ | tanh (𝐶ℎ𝑢𝑛𝑘 (𝑢, 2) [1]) |. (5)

The 𝐶ℎ𝑢𝑛𝑘 function is utilized to divide the 𝑢 into 𝑢𝑎 and 𝑢𝑒. The
𝑢𝑏𝑜𝑢𝑛𝑑 is positive and it defines the permissible range for 𝑢𝑎 and 𝑢𝑒. We
set 𝑢𝑏𝑜𝑢𝑛𝑑 to 360◦. The azimuth and elevation angles can determine the
position of the rendering camera in 3D coordinates. After that, the 3D
object is rendered based on the position of the rendering camera in 3D
coordinates:

𝑀 = 𝑅
(

𝑢𝑎, 𝑢𝑒, 𝑆
)

. (6)

During the rendering process, 𝑅 has two components: a rasterizer
and a shader. First, the rasterizer transforms the 3D object 𝑆 from the
world to view coordinates given the camera viewpoint and assigns faces
to pixels. Using these face assignments, the shader creates multiple
values for each pixel and then blends them. By doing so, the input 3D
object 𝑆 is transformed into multi-view images 𝑀 .

Group-view mechanism. Rendering a 3D object often results in the
generation of redundant and repetitive multi-view images [23]. To
extract the content relationship and discriminative information from
the views, we incorporate a residual connection into the group-view
mechanism, as shown in Fig. 3(b). The residual structure enables the
network to learn the residual mapping between the input and output
of the layer, enhancing the network’s ability to model complex inter-
dependencies [40]. Consequently, incorporating the residual structure
into the group-view mechanism enables a deeper exploration of the
intrinsic connections among multi-view images. Specifically, we first
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Fig. 3. The network structure of visual feature extraction. The viewpoint position learning(𝐸𝑉 ) is utilized to learn the scene parameters(𝑢) from 3D objects(𝑆), and then the
differentiable renderer(𝑅) generates multi-view images(𝑀) based on the 𝑢. After that, the pre-trained image encoder is utilized to extract multi-view features(𝑓𝑜𝑟𝑖) from 𝑀 , and
then the group-view mechanism(𝐸𝐺) is utilized to fuse the 𝑓𝑜𝑟𝑖 into a unified representation space. The snowflake represents the freeze of the model weights, while the flame
denotes iterative the model weights.

Fig. 4. The scene parameters of the differential render. The red point represents the 3D
object. The azimuth and elevation angles can determine the position of the rendering
camera in 3D coordinates.

extract the multi-view features 𝑓 𝑖
𝑜𝑟𝑖 from multi-view images 𝑀𝑖 by the

pre-trained image encoder 𝐸𝐼 . Subsequently, the Multi-view features
are concatenated by:

𝑓𝑐 = concate
(

𝑓 1∼𝑖
𝑜𝑟𝑖

)

, (7)

where concate represents the vertical concatenation. After that, a resid-
ual layer is utilized, which improves the model’s capacity to describe
inter-dependencies between views. The global multi-view feature 𝑃 ∈
R1×N are defined as:

𝑃 = 𝑓𝑐 ⋅𝑤 + 𝛿 ⋅ 𝑓𝑐 ⋅ 𝛽, (8)

The weight 𝑤 ∈ R1×N, 𝛿 ∈ R1×N and 𝛽 ∈ R1 are employed to fine-tune
the weights of 𝑓𝑐 ∈ R1×N. The unlearnable hyperparameter 𝛽 serves as
the balance factor for the residual connection, similar to ResNext [41].
The learnable weights 𝑤 and 𝛿 of the residual connection are dot
multiplied with 𝑓𝑐 . This process harnesses the explanatory prowess of
the residual structure, thereby directing the DILF model to focus on
complex inter-dependencies. The weight 𝑤 and 𝛿 are defined as:

𝑤 = 𝑆𝑖𝑔𝑚𝑜𝑑
(

𝑊2𝑅𝑒𝐿𝑈
(

𝑊1𝑓𝐺𝐴𝑃 (𝑓𝑐 )
))

, (9)

𝛿 = 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒
(

𝑓𝑐
)

, (10)

where 𝑊1 and 𝑊2 are learning weights of linear layers, 𝑓𝐺𝐴𝑃 denotes
the global average pooling.

After the differentiable rendering and group-view mechanism, the
input 3D object 𝑆 is transformed into global multi-view features 𝑃 ,
providing a feature representation of the 3D modality for subsequent
multi-view image–language fusion.

3.1.3. Fusion loss in contrastive learning
Following the extraction of textual features 𝑇 and global multi-

view features 𝑃 , DILF pre-trained to fuse these two modalities’ rep-
resentations into a unified representation space. Throughout the net-
work training, we maintain the pre-trained vision-language models,
i.e., SLIP [38](𝐸𝑇 , 𝐸𝐼 ) in a frozen state and train the viewpoint position
learning(𝐸𝑉 ) and group-view mechanism(𝐸𝐺) by aligning an object’s
textual features 𝑇 with its corresponding multi-view features 𝑃 . This
approach enables DILF to learn scene rendering parameters through
natural language supervision, thereby obtaining suitable multi-view im-
ages in a data-driven manner. Specifically, the fusion loss in contrastive
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Fig. 5. The fusion loss in contrastive learning. The elements in the diagonal(orange
region) represent the mutual match between the features 𝑇 and multi-view features 𝑃 .
The fusion loss aims to maximize the product of 𝑇 ⋅ 𝑃 in the diagonal.

learning is formulated as:

𝐿(𝑇 ,𝑃 ) =
∑

(𝑖,𝑗)
−1
2
log

exp
( 𝑇𝑖𝑃𝑗

𝜏

)

∑

𝑘 exp
(

𝑇𝑖𝑃𝑘
𝜏

) − 1
2
log

exp
( 𝑇𝑖𝑃𝑗

𝜏

)

∑

𝑘 exp
( 𝑇𝑘𝑃𝑗

𝜏

) ,

s.t. 𝑖 ≠ 𝑗

(11)

where 𝑖 and 𝑗 are index of the textual features 𝑇 and multi-view features
𝑃 respectively. A positive pair in the training batch is indicated when
𝑖 = 𝑗. Conversely, when 𝑖 ≠ 𝑗, this signifies that the textual features
𝑇𝑖 do not match the multi-view features 𝑃𝑗 , as shown in Fig. 5. We
use a learnable temperature parameter 𝜏 as well, similar to CLIP [10].
During pre-training, we find that if we update SLIP’s [38] image and
text encoders (𝐸𝑇 , 𝐸𝐼 ) will result in catastrophic forgetting due to
limited data size. This will lead to a significant performance drop when
applying DILF to downstream tasks. Therefore we freeze the weights of
𝐸𝑇 and 𝐸𝐼 during the entire pre-training and only update 𝐸𝑉 and 𝐸𝐺.

In the process of multi-view image–language fusion, we utilize
language as explicit guidance to obtain suitable rendering scene pa-
rameters in a data-driven manner. This approach allows DILF to benefit
from the large-scale pretrained vision-language encoders, which enable
the language modality to provide supplementary information for the 3D
modality, and therefore augmenting zero-shot 3D shape understanding.

3.2. DILF for 3D classification

By leveraging the pre-trained weights of DILF as described in Sec-
tion 3.1, we implement both zero-shot and standard 3D classification
tasks separately based on the pre-trained weights of DILF, as shown in
Fig. 6. The weight training status of DILF’s different modules during
pretraining, zero-shot classification, and standard classification stage,
as shown in Table 1. ShapeNet [42] is employed as the pretraining
dataset, while ModelNet40 [43] and ScanObjectNN [44] are used for
3D classification. To facilitate zero-shot learning, we removed overlap-
ping classes from ShapeNet, ModelNet40, and ScanObjectNN, thereby
ensuring that the unseen objects were not part of the pretraining
samples. In the zero-shot classification process, we freeze the weights
of DILF and input the unseen category of 3D objects into the network.
Conversely, during the standard 3D classification, we freeze the weights
of 𝐸𝑉 and 𝐸𝐼 and fine-tune the weights of 𝐸𝐺 and 𝐸𝐶 .

4. Experiments

In this section, we first outline the experimental settings, encom-
passing the downstream datasets, implementation details, evaluation

Table 1
The weight training status of DILF’s different modules during pretraining, zero-shot
classification, and standard classification stage. The ∇ signifies that the module weights
are frozen during training. The ✓ represents the iteration of the module weights during
the training process. The × represents that the module is not used in the present training
stage.

Modules Pretraining Zero-shot
classification

Standard
classification

Image encoder (𝐸𝐼 ) ∇ ∇ ∇
Text encoder (𝐸𝑇 ) ∇ ∇ ×
Viewpoint position learning (𝐸𝑉 ) ✓ ∇ ∇
Group-view mechanism (𝐸𝐺) ✓ ∇ ✓

Classification head (𝐸𝐶 ) × × ✓

Large-scale language models (𝐿𝐿𝑀𝑠) ∇ ∇ ×

metrics, and computation costs. Subsequently, we provide the quan-
titative outcomes for both standard 3D classification and zero-shot
3D classification. Finally, we conduct the ablation study to verify the
efficacy of each component within the DILF framework.

4.1. Downstream datasets

To facilitate zero-shot learning, we employ different datasets for
DILF pretraining and classification tasks. Specifically, ShapeNet [42]
serves as the pretraining dataset, while ModelNet40 [43] and ScanOb-
jectNN [44] are used for zero-shot learning. We adopts the segmenta-
tion rule of ULIP [12] for the training and evaluation dataset to ensure
performing a fair comparison with previous zero-shot methods. Specif-
ically, we eliminate overlapping classes among ShapeNet, ModelNet40,
and ScanObjectNN to ensure that the unseen objects are not included
in the training samples.

4.1.1. Pretraining dataset
ShapeNet is a richly annotated, large-scale shape repository of 3D

CAD models representing various objects, with extensive annotations.
The 3D models in ShapeNet cover a broad spectrum of semantic cat-
egories, organized according to the WordNet taxonomy. ShapeNet is
widely employed in tasks such as point cloud classification, ShapeNet
comprises more than 3 million 3D models, encompassing 55 prevalent
object categories and 12,000 distinct object classes.

4.1.2. Classification dataset
ModelNet40 is a synthetic dataset of 3D CAD models, with a total

of 9843 samples designated for training and 2468 samples for testing,
spanning across 40 distinct categories.

ScanObjectNN is a dataset comprising of real-world 3D scanned ob-
jects, encompassing 2902 objects classified into 15 distinct categories.
The dataset is available in three variants: ‘OBJ-ONLY’, which includes
ground truth segmented objects extracted from scene meshes datasets;
‘OBJ-BJ’, which features objects coupled with background noise; and
‘PB-T50-RS’, which introduces perturbations such as translation, rota-
tion, and scaling to the dataset.

4.2. Implementation details

DILF’s pretraining and fine-tuning experiments are conducted on
4 NVIDIA RTX 5000 GPUs with 16 GB of memory each. The net-
work structure is implemented using Pytorch [45]. The differentiable
renderer is implemented using Pytorch3D [46]. During the differen-
tiable rendering, we established the rendering configurations of cam-
era position and light position as unlearnable parameters, while the
azimuth and elevation angles of the rendering camera were set as learn-
able parameters, in line with previous differentiable rendering-based
studies [20,47,48].

During the multi-view rendering, the original point clouds in the
ModelNet40 and ScanObjectNN datasets do not include color informa-
tion. Consequently, colors were manually selected for the point clouds
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Fig. 6. DILF for zero-shot and standard 3D classification. The switch selects direct zero-shot classification without fine-tuning or standard classification with fine-tuning. The
snowflake represents the freeze of the model weights, while the flame denotes iterative the model weights.

before their rendering into multi-view images. To ensure a fair compar-
ison with prior 3D shape classification studies [20,21,23,49,50], the 3D
objects are rendered in gray, aligning with the color configuration used
in previous methods.

4.2.1. Pretraining
For the network input, we uniformly sample 3072 points from each

3D object. As mentioned in Section 3.1, we choose the differentiable
renderer 𝑅 from Pytorch3D in our pipeline for its speed and compatibil-
ity rendering. The powerful language model, GPT-3 [37], is adopted to
convert the language commands into 3D-Specific prompts as described
in Section 3.1.1. As mentioned in Section 3.1.2, the PointNet [14] is
leveraged as the backbone of the viewpoint position learning network
𝐸𝑉 . During pretraining, we utilize an advanced version of CLIP, namely
SLIP [38], to perform as the visual and text encoder(𝐸𝑇 , 𝐸𝐼 ). We freeze
the weights of 𝐸𝑇 and 𝐸𝐼 and fine-tune the weights of 𝐸𝑉 and 𝐸𝐺 for
100 epochs, with the 64 as the batch size, 10−3 as the learning rate,
and AdamW as the optimizer.

4.2.2. Zero-shot 3D classification
In accordance with [12], the process of zero-shot 3D classification

is performed by quantifying the distances between the features of a
3D object and the textual features of potential categories, as depicted
in Fig. 6. It is notable that the categories utilized in zero-shot 3D
classification are excluded from the pretraining phase, thereby pre-
serving the purpose of zero-shot learning. The category that yields the
minimal distance is chosen as the predicted category, as delineated in
Section 3.1.3. Our pretrained models are directly utilized in zero-shot
classification, without the necessity for a fine-tuning stage.

4.2.3. Fine-tuning on standard 3D classification
In Standard 3D classification, we introduced the softmax layer as

the classification head 𝐸𝐶 . As mentioned in Section 3.2, 𝐸𝐺 and 𝐸𝐶
are fine-tuned, while the rest of the modules are frozen, as depicted in
Fig. 6. We set the learning rate to 10−4 and fine-tune our model for 60
epochs, with a batch size of 64, and AdamW as the optimizer.

4.3. Evaluation metrics and computation cost

In accordance with 3D classification community standards, we eval-
uated each method using top-1 accuracy for the zero-shot 3D classifi-
cation task; mean Average Precision (mAP), and Cumulative Matching
Characteristic (CMC) curves for the standard 3D classification task.

We record the number of floating-point operations (GFLOPs) and
the time of a forward pass for a single input sample. In the zero-shot
classification evaluation stage, the floating point operations (FLOPs)
of DILF when retrieving one 3D object are limited to 0.132 GFLOPs,

with a per-computation cost of 13.23 ms. In the standard classification
evaluation stage, the FLOPs of DILF when retrieving one 3D object are
limited to 0.104 GFLOPs, with a per-computation cost of 11.62 ms.
The computation cost of DILF validates that DILF is affordable when
implemented in deployment scenarios. It is notable that previous zero-
shot classification works [6,11–13,51] have not accounted for the
computational overhead of rendering 3D objects into multi-view images
in their FLOPs reporting. In contrast, DILF incorporates the differ-
entiable renderer into its network architecture, enabling end-to-end
training. Consequently, DILF calculates the complete computational
overhead of model inference, inclusive of the computational overhead
of differentiable rendering.

4.4. Result comparison

This section offers a comparative analysis between DILF and current
methods within the zero-shot 3D and standard 3D classification. DILF
achieves state-of-the-art performance in zero-shot 3D classification and
exhibits comparable performance in standard 3D classification with the
current methods.

4.4.1. Zero-shot 3D classification
In Table 2, we compare the zero-shot classification performance

with existing methods. DILF achieves 67.7%/53.3%/47.6%/38.5%
accuracy(top-1) on ModelNet40 and ScanObjectNN, respectively, sur-
passing previous methods by at least +3.5%/+3.2%/+6.4%/+3.1%.
The result demonstrates the superiority of DILF in handling zero-shot
classification challenges, the reasons can be summarized as follows:
(1) The previous zero-shot classification methods [6,11,13,51,52] uti-
lize predefined rendering parameters to generate multi-view images.
However, the predefined rendering parameters lead to redundant and
repeated multi-view images when rendering a 3D object, which further
leads to network overfitting [53]. With the difference from previous
methods, DILF employs a differentiable renderer that fuses explicit text
guidance into the rendering process to achieve iterative updates of
rendering parameters, thereby guaranteeing optimal views as network
input. (2) The domain gap exists in the multi-view images during
3D object rendering, as different views contain distinct attributes of
the 3D object [54]. However, the previous zero-shot classification
methods [6,11,13,51,52] treat all views equally to generate the shape
descriptor, neglecting the significant role that the content relationship
and discriminative information of the views play in understanding
3D modality. With the difference from previous methods, a group-
view mechanism is adopted to mine the interdependencies among
views, therefore facilitating a deeper exploration of the intrinsic con-
nections among multi-view images. In summary, the introduction of
the differentiable rendering mechanism and grouping-view mechanism
augments the perceptual ability of 3D objects and, therefore enhances
the performance of DILF in zero-shot 3D classification.
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Table 2
Zero-shot 3D classification performance (top-1%) on ModelNet40 and ScanObjectNN.

Method Year ModelNet40 ScanObjectNN

S_OBJ-ONLY S_OBJ-BG S_PB-T50-RS

PointCLIP [11] 2022 23.8 21.3 19.3 15.4
CLIP2Point [52] 2022 49.4 35.5 30.5 23.3
ULIP-2 [6] 2023 61.5 – – –
ReCon [51] 2023 61.7 43.7 40.4 30.5
PointCLIP V2 [13] 2023 64.2 50.1 41.2 35.4

DILF 2023 67.7 53.3 47.6 38.5

Table 3
Standard 3D classification performance (Rank-1, mAP%) on ModelNet40 and ScanOb-
jectNN. †𝐴𝑣𝑔 represents the standard classification methods average performance, ‡𝐴𝑣𝑔
represents the zero-shot classification methods average performance.

Method Year ModelNet40 ScanObjectNN

Rank-1 mAP Rank-1 mAP

MVTN [20] 2021 93.8 92.2 – –
HyCoRe [55] 2022 94.5 91.9 88.3 87.0
PointNeXt [56] 2022 94.0 91.1 88.2 86.8
PointStack [57] 2022 93.3 89.6 87.2 86.2
PointMLP [58] 2022 94.5 91.4 83.8 81.8
RepSurf-U [59] 2023 94.7 – 84.6 –
Point2Vec [60] 2023 94.8 92.0 87.5 86.0
SPoTr [61] 2023 – – 88.6 86.8
PointConT [62] 2023 93.5 92.6 90.3 88.5
PointGPT [63] 2023 94.9 – 93.4 –
†𝐴𝑣𝑔 – 94.2 91.5 88.0 86.2

ULIP-2 [6] 2023 94.7 92.4 91.5 91.2
ReCon [51] 2023 94.7 – 91.2 –
‡𝐴𝑣𝑔 – 94.7 92.4 91.4 91.2

DILF 2023 94.8 92.4 91.9 91.6

4.4.2. Standard 3D classification
The recent zero-shot 3D Classification methods always fall short

when applied to standard 3D classification tasks. In terms of this, we
validate the effectiveness of DILF on standard 3D Classification to val-
idate its adaptability in handling standard 3D classification challenges,
as shown in Table 3. Two kinds of methods are compared: methods
concentrate on standard 3D classification [20,55–63] and methods con-
centrate on zero-shot 3D classification [6,51]. The results indicate that
DILF outperforms the previous zero-shot 3D classification on standard
3D classification tasks. This is because the proposed method allows the
network to obtain accurate text–image fusion in a data-driven manner,
enabling a comprehensive perception of the 3D object by leveraging
the generalizing power of language modality. Meanwhile, DILF shows
slightly inferior to standard 3D classification methods on standard 3D
classification tasks. Since the CLIP is a vision-language model, directly
utilizing the CLIP in 3D shape understanding requires rendering the 3D
object into multi-view images and then aligning between the text and
images. However, the conversion from a 3D object into multi-view im-
ages exists in information loss, as the positional relationships between
points in the 3D object are not explicitly represented in the multi-view
images [64], therefore leading to a decline in network performance.
Despite these limitations, DILF outperforms the average performance
of standard 3D classification methods by + 0.6%/+ 0.9%/+ 3.9%/+
5.4% in terms of Rank-1/mAP on ModelNet40 and ScanObjectNN, and
the average performance of zero-shot 3D classification methods by +
0.1%/+ 0.0%/+ 0.5%/+ 0.4% in terms of Rank-1/mAP on ModelNet40
and ScanObjectNN. The above results validate the robustness of DILF
on standard 3D classification tasks.

4.5. Ablation study

DILF comprises three components, namely LLM-assisted textual fea-
ture learning, differentiable renderer, and group-view mechanism. In

this section, we perform ablation studies on the zero-shot classification
task to analyze each component of DILF.

4.5.1. Analysis of differentiable rendering
In this section, we conduct the ablation study for the differentiable

renderer, as shown in Table 4. Specifically, we compare the effect of
different rendering configurations on zero-shot classification accuracy,
and then we explore the suitable viewpoints numbers in zero-shot
learning.

Analysis of alternative rendering configuration. To evaluate the ef-
fectiveness of the differentiable renderer in 3D shape understand-
ing, we employ the alternative rendering configurations for producing
multi-view images, while maintaining the remaining components of
the DILF module. We chose PointCLIP V2 [13] rendering configura-
tion(i.e. project the point cloud from 6 orthogonal views, index-1) and
ULIP-2 [6] rendering configuration(i.e. rendering a multi-view image
for every 30◦ interval, index-2) as alternative rendering configura-
tions for comparison with the differentiable renderer, as presented in
Fig. 1. As shown in Table 4, DILF(index-4) surpasses previous render-
ing configurations(index-1∼2) by at least +19.1%/+15.1%/+10.3%/
+4.8% accuracy(top-1) on ModelNet40 and ScanObjectNN. The reason
is that the previous zero-shot classification methods [6,13] are based on
predefined rendering parameters. However, the predefined rendering
parameters lead to redundant and repeated multi-view images when
rendering a 3D object, which further leads to network overfitting [23].
With the difference between previous methods, DILF employs a differ-
entiable renderer that fuses explicit text guidance into the rendering
process, thereby DILF is able to leverage a data-driven approach to
mining views with more discriminative information.

Analysis of view numbers in differentiable rendering . To evaluate
the effect of the number of views on the performance of DILF. We
perform an ablation study to examine the impact of varying the num-
ber of rendering viewpoints, as depicted in Table 4. The experiment
results(index-3∼6) demonstrate that an excessive or insufficient num-
ber of viewpoints does not augment the DILF’s capacity in 3D shape
classification. The reason is that an excess of rendering viewpoints can
lead to redundant and repetitive images, while a shortage might not
capture the key information of 3D objects [2]. In light of the experi-
mental findings, DILF employs 6 rendering viewpoints for multi-view
image rendering (index-4).

4.5.2. Analysis of LLM-assisted textual feature learning
In this section, we conduct the ablation study for LLM-assisted

textual feature learning. To fully adapt the descriptive capabilities of
LLMs to generate 3D-Specific prompts enriched with 3D semantics, we
propose the following four series of language commands:

Words to Sentence. Input: ‘‘Make a sentence using these
words: a [plane], 3D shape, rendering.’’; Output: ‘‘A 3D
plane’s 3D shape includes aerodynamic design with
wings and tail when rendering it’’.

Key Component Description. Input: ‘‘What are the key compo-
nents of a 3D [table]?’’; Output: ‘‘The key components of a
3D table are the tabletop, legs or support structure,
and any additional features or embellishments’’.

Discriminative Component Description. Input: ‘‘Compared
with other 3D objects, what are the exterior features
of a 3D [car]?’’; Output: ‘‘Sleek and aerodynamic body,
wheels, windows, headlights, taillights, and a dis-
tinct front grille’’.

Shape Description. Input: ‘‘Describe the shape of a 3D [lap-
top] when rendering it.’’; Output: ‘‘Rectangular prism with
a thin and flat body, a screen, and a keyboard’’.

As shown in Table 5, the results indicate that the use of LLM-assisted
textual feature learning(index-2∼5) enhances the top-1 accuracy of
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Table 4
Analysis of differential render (top-1%) on ModelNet40 and ScanObjectNN.

Index Rendering configuration View ModelNet40 ScanObjectNN

S_OBJ-ONLY S_OBJ-BG S_PB-T50-RS

1 PointCLIP V2 6 48.6 38.2 37.3 33.7
2 UILP-2 12 47.4 36.5 35.8 29.3

3

DILF

4 56.5 44.5 37.3 32.1
4 6 67.7 53.3 47.6 38.5
5 8 54.2 42.4 38.1 30.1
6 16 50.1 39.9 36.7 29.2

Table 5
Analysis of LLM-assisted textual feature learning (top-1%) on ModelNet40 and ScanObjectNN.

Index Language command ModelNet40 ScanObjectNN

S_OBJ-ONLY S_OBJ-BG S_PB-T50-RS

1 bA 3D object of a [CLASS]. 43.2 38.2 37.7 29.7
2 aMake a sentence using these words: a [CLASS], 3D shape, rendering. 64.2 50.4 44.1 36.7
3 aWhat are the key components of a 3D [CLASS]? 60.7 52.2 44.7 33.2
4 aCompared with other 3D objects, what are the exterior features of a 3D [CLASS]? 64.5 49.8 45.3 33.7
5 aDescribe the shape of a 3D [CLASS] when rendering it. 67.7 53.3 47.6 38.5

a Denotes the use of LLMs to generate 3D-Specific prompts based on the input sentence
b Denotes the direct input of the sentence into the DILF.

Table 6
Performance comparison with different components (top-1%) on ModelNet40 and
ScanObjectNN. The , , and  represent differential render, LLM-assisted textual
feature learning, and group-view mechanism respectively.

Index    ModelNet40 ScanObjectNN

S_OBJ-ONLY S_OBJ-BG S_PB-T50-RS

1 × × × 41.1 31.9 30.7 25.2
2 × × ✓ 42.6 34.2 33.4 27.7
3 × ✓ ✓ 47.4 36.5 35.8 29.3
4 ✓ × ✓ 43.2 38.2 37.7 29.7
5 ✓ ✓ × 54.2 42.4 38.1 30.1
6 ✓ ✓ ✓ 67.7 53.3 47.6 38.5

DILF by at least +17.5%/+11.6%/+6.4%/+4.0% on ModelNet40 and
ScanObjectNN, compared to the use of naive textual input(index-1).
The reason is that the naive textual input cannot fully describe 3D
shapes and harms the pre-trained language–image fusion in the em-
bedding space [13]. To overcome the above challenge, we propose
LLM-assisted textual feature learning to generate 3D-specific prompts
that are rich in 3D semantics as described in Section 3.1. Based on
the experimental results, DILF employs the language command struc-
ture ‘‘Describe the shape of a 3D [CLASS] when rendering
it’’. and leverages LLMs to convert these language commands into
3D-Specific prompts.

4.5.3. Performance comparison with different components of DILF
To evaluate each component of DILF, we perform ablation experi-

ments including differential render(), the LLM-assisted textual feature
learning (), and the group-view mechanism(), as shown in Table 6.
When  is not adopted, we adopt the ULIP [12] rendering setting.
When  is not adopted, We do not utilize LLMs to process input text
prompts, but directly input the text prompts into DILF. When  is not
adopted, we vertically concanate the multi-view features, and then a
linear layer is adopted to resize the concentration features into specified
dimensions.

Analysis of differential render (). For index-3 and index-6, the
performance of DILF is improved by +20.3%/+16.8%/+11.8%/+9.2%
accuracy(top-1) on ModelNet40 and ScanObjectNN when utilizing the
 to generate the multi-view images. With the comparison of prede-
fined rendering parameters(index-3), the differential render(index-6)
utilizes language prompts as supervisory signals to iteratively select
appropriate rendering. The experimental result demonstrates that 

has the potential to obtain more informative rendering images and
contribute to accurate text–image fusion. From index-2 and index-4,
we can also observe that with the , the performance is improved
by +0.6%/+4.0%/+3.7%/+2.0% accuracy(top-1) on ModelNet40 and
ScanObjectNN, because the  enables a data-driven manner to obtain
suitable rendering viewpoint positions.

Analysis of LLM-assisted textual feature learning (). For index-4
and index-6, the performance is improved by +24.5%/+15.1%/+9.9%/
+8.8% accuracy(top-1) on ModelNet40 and ScanObjectNN. The reason
for the decline in performance is that when directly inputting text
prompts into the CLIP-based network due to the challenge of Naive
Textual Prompting (NTP) [13]. NTP stems from the simplistic textual
prompt’s inability to adequately represent 3D shapes, which conse-
quently impairs the pre-established language–image alignment in the
embedding space. From index-2 and index-3, we can also observe that
with the , the performance is improved by +4.8%/+2.3%/+2.4%/
+1.6% accuracy(top-1) on ModelNet40 and ScanObjectNN because 
enables to leverage the descriptive capabilities of LLMs to generate
language prompts enriched with 3D semantics derived from the input
textual prompts.

Analysis of group-view mechanism (). For index-5 and index-6, the
performance is improved by +13.5%/+10.9%/+9.5%/+8.4%
accuracy(top-1) on ModelNet40 and ScanObjectNN. The reason is
that the  introduces a residual structure for feature fusion, which
bolsters the network’s capability to model complex interdependencies
among multi-view features [40]. Therefore, incorporating the residual
structure into the  facilitates a deeper exploration of the intrinsic
connections among multi-view images. From index-1 and index-2,
we can also observe that with the , the performance is improved
by +1.5%/+2.3%/+2.7%/+2.5% accuracy(top-1) on ModelNet40 and
ScanObjectNN. This enhancement is attributed to the extension of 
into DILF, which enables DILF to extract discriminative information
while preserving representative information among multi-view images.

4.6. Visualization result of differentiable rendering

In this section, we provide the visualization result of differentiable
rendering, as shown in Fig. 7. It can be observed that as the number
of epochs increases, there is progressively less redundant and repetitive
information in the multi-view image. The reason is that DILF introduces
a differentiable rendering module that predicts optimal viewpoints in
a data-driven manner. Therefore, this differentiable rendering process
allows DILF to generate multi-view images that are more semantically
representative.
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Fig. 7. The regression of rendering parameters in the differentiable renderer of DILF. The red point represents a 3D object, while (A-F) represent the rendering cameras, and (a-f)
represent the corresponding rendering images. At epoch = 0, redundant and repetitive information can be observed in the multi-view images between a1 and b1, and between d1
and e1. DILF regresses the rendering parameters via a differentiable renderer to achieve optimal rendering viewpoint positions. Therefore, as the number of epochs increases, there
is progressively less redundant and repetitive information in the multi-view image (a3, b3 and d3, e3).

5. Conclusion

We propose DILF, which fuses explicit text guidance into the ren-
dering process for iteratively updating rendering parameters to produce
informative multi-view images. DILF allows the network to obtain accu-
rate text–image fusion in a data-driven manner, enabling a comprehen-
sive perception of the 3D object by leveraging the generalizing power
of language modality. Empirical results demonstrate the advantages of
DILF in both standard and zero-shot 3D shape classification.

Future work may explore optimizing rendering settings. The DILF
requires a predefined number of rendering viewpoints before the train-
ing process. However, the required number of viewpoints generally
varies depending on the size of the 3D object. Therefore, it is crucial
to dynamically acquire appropriate numbers of rendering viewpoints
instead of relying on static, predefined ones. Furthermore, the proposed
method can potentially tackle other zero-shot tasks, e.g., zero-shot 3D
part segmentation and zero-shot 3D object detection.
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