11 research outputs found

    Inhibition mechanism of SARS-CoV-2 main protease by ebselen and its derivatives

    Get PDF
    The SARS-CoV-2 pandemic has triggered global efforts to develop therapeutics. The main protease of SARS-CoV-2 (M(pro)), critical for viral replication, is a key target for therapeutic development. An organoselenium drug called ebselen has been demonstrated to have potent M(pro) inhibition and antiviral activity. We have examined the binding modes of ebselen and its derivative in M(pro) via high resolution co-crystallography and investigated their chemical reactivity via mass spectrometry. Stronger M(pro) inhibition than ebselen and potent ability to rescue infected cells were observed for a number of derivatives. A free selenium atom bound with cysteine of catalytic dyad has been revealed in crystallographic structures of M(pro) with ebselen and MR6-31-2 suggesting hydrolysis of the enzyme bound organoselenium covalent adduct and formation of a phenolic by-product, confirmed by mass spectrometry. The target engagement with selenation mechanism of inhibition suggests wider therapeutic applications of these compounds against SARS-CoV-2 and other zoonotic beta-corona viruses

    A Comparative Quantitative Proteomic Analysis of HCMV-Infected Cells Highlights pUL138 as a Multifunctional Protein

    No full text
    Human cytomegalovirus (HCMV) is a widespread virus that can establish life-long latent infection in large populations. The establishment of latent infection prevents HCMV from being cleared by host cells, and HCMV reactivation from latency can cause severe disease and death in people with immature or compromised immune systems. To establish persistent and latent infection in healthy individuals, HCMV encodes a large array of proteins that can modulate different components and pathways of host cells. It has been reported that pUL138 encoded by the UL133-UL138 polycistronic locus promotes latent infection in primary CD34+ hematopoietic progenitor cells (HPCs) infected in vitro. In this study, recombinant HCMV HanUL138del was constructed by deleting the UL138 locus of Han, a clinical HCMV strain. Then, a comparative quantitative proteomic analysis of Han- and HanUL138del-infected MRC5 cells was performed to study the effect of pUL138 on host cells in the context of HCMV infection. Our results indicated that, during the early phase of HCMV infection, the innate immune response was differentially activated, while during the late phase of HCMV infection, multiple host proteins were differentially expressed between Han- and HanUL138del-infected cells, and these proteins are involved in the oxidation-reduction process, ER to Golgi vesicle-mediated transport, and extracellular matrix organization. Among these proteins, STEAP3, BORCS7, FAM172A, RELL1, and WDR48 were further demonstrated to affect HCMV infection. Our study provides a systematic view of the effect of pUL138 on the host cell proteome and highlights the proposition that multiple biological processes or host factors may be involved in the overall role of the UL133-UL138 polycistronic locus in HCMV persistence

    A Subcellular Quantitative Proteomic Analysis of Herpes Simplex Virus Type 1-Infected HEK 293T Cells

    No full text
    Herpes simplex virus type 1 (HSV-1) is widespread double-stranded DNA (dsDNA) virus that establishes life-long latency and causes diverse severe symptoms. The mechanisms of HSV-1 infection and HSV-1’s interactions with various host cells have been studied and reviewed extensively. Type I interferons were secreted by host cells upon HSV infection and play a vital role in controlling virus proliferation. A few studies, however, have focused on HSV-1 infection without the presence of interferon (IFN) signaling. In this study, HEK 293T cells with low toll-like receptor (TLR) and stimulator of interferon genes protein (STING) expression were infected with HSV-1 and subjected to a quantitative proteomic analysis. By using a subcellular fractionation strategy and high-performance mass spectrometry, a total of 6607 host proteins were quantified, of which 498 proteins were differentially regulated. A bioinformatics analysis indicated that multiple signaling pathways might be involved in HSV-1 infection. A further functional study indicated the role of Interferon-induced transmembrane protein 3 (IFITM3), Coiled-coil-helix-coiled-coil-helix domain-containing protein 2 (CHCHD2), and Tripartite motif-containing protein 27 (TRIM27) in inhibiting viral DNA replication and proliferation. Our data provide a global view of host responses to HSV-1 infection in HEK 293T cells and identify the proteins involved in the HSV-1 infection process

    Identification and Comparative Analysis of CBS Domain-Containing Proteins in Soybean (Glycine max) and the Primary Function of GmCBS21 in Enhanced Tolerance to Low Nitrogen Stress

    No full text
    Nitrogen is an important macronutrient required for plant growth, and is a limiting factor for crop productivity. Improving the nitrogen use efficiency (NUE) is therefore crucial. At present, the NUE mechanism is unclear and information on the genes associated with NUE in soybeans is lacking. cystathionine beta synthase (CBS) domain-containing proteins (CDCPs) may be implicated in abiotic stress tolerance in plants. We identified and classified a CBS domain–containing protein superfamily in soybean. A candidate gene for NUE, GmCBS21, was identified. GmCBS21 gene characteristics, the temporal expression pattern of the GmCBS21 gene, and the phenotype of GmCBS21 overexpression in transgenic Arabidopsis thaliana under low nitrogen stress were analyzed. The phenotypes suggested that the transgenic Arabidopsis thaliana seedlings performed better under the nitrogen-deficient condition. GmCBS21-overexpressing transgenic plants exhibit higher low nitrogen stress tolerance than WT plants, and this suggests its role in low nitrogen stress tolerance in plants. We conclude that GmCBS21 may serve as an excellent candidate for breeding crops with enhanced NUE and better yield

    A viral RNA-dependent RNA polymerase inhibitor VV116 broadly inhibits human coronaviruses and has synergistic potency with 3CLpro inhibitor nirmatrelvir

    No full text
    Abstract During the ongoing pandemic, providing treatment consisting of effective, low-cost oral antiviral drugs at an early stage of SARS-CoV-2 infection has been a priority for controlling COVID-19. Although Paxlovid and molnupiravir have received emergency approval from the FDA, some side effect concerns have emerged, and the possible oral agents are still limited, resulting in optimized drug development becoming an urgent requirement. An oral remdesivir derivative, VV116, has been reported to have promising antiviral effects against SARS-CoV-2 and positive therapeutic outcomes in clinical trials. However, whether VV116 has broad-spectrum anti-coronavirus activity and potential synergy with other drugs is not clear. Here, we uncovered the broad-spectrum antiviral potency of VV116 against SARS-CoV-2 variants of concern (VOCs), HCoV-OC43, and HCoV-229E in various cell lines. In vitro drug combination screening targeted RdRp and proteinase, highlighting the synergistic effect of VV116 and nirmatrelvir on HCoV-OC43 and SARS-CoV-2. When co-administrated with ritonavir, the combination of VV116 and nirmatrelvir showed significantly enhanced antiviral potency with noninteracting pharmacokinetic properties in mice. Our findings will facilitate clinical treatment with VV116 or VV116+nirmatrelvir combination to fight coronavirus infection

    Identification of pyrogallol as a warhead in design of covalent inhibitors for the SARS-CoV-2 3CL protease

    No full text
    SARS-CoV-2 3CL protease (3CLpro) is essential for coronavirus replication and of great interest as an antiviral drug target. Here, the authors show that the naturally occurring flavonoid myricetin is a non-peptidomimetic and covalent inhibitor of 3CLpro, and they solve crystal structures of 3CLpro with myricetin and derivatives, which reveal that the pyrogallol group covalently modifies the catalytic cysteine
    corecore