853 research outputs found

    Chaotic Evolution in Quantum Mechanics

    Full text link
    A quantum system is described, whose wave function has a complexity which increases exponentially with time. Namely, for any fixed orthonormal basis, the number of components required for an accurate representation of the wave function increases exponentially.Comment: 8 pages (LaTeX 16 kB, followed by PostScript 2 kB for figure

    Adiabatic motion of a neutral spinning particle in an inhomogeneous magnetic field

    Get PDF
    The motion of a neutral particle with a magnetic moment in an inhomogeneous magnetic field is considered. This situation, occurring, for example, in a Stern-Gerlach experiment, is investigated from classical and semiclassical points of view. It is assumed that the magnetic field is strong or slowly varying in space, i.e., that adiabatic conditions hold. To the classical model, a systematic Lie-transform perturbation technique is applied up to second order in the adiabatic-expansion parameter. The averaged classical Hamiltonian contains not only terms representing fictitious electric and magnetic fields but also an additional velocity-dependent potential. The Hamiltonian of the quantum-mechanical system is diagonalized by means of a systematic WKB analysis for coupled wave equations up to second order in the adiabaticity parameter, which is coupled to Planck’s constant. An exact term-by-term correspondence with the averaged classical Hamiltonian is established, thus confirming the relevance of the additional velocity-dependent second-order contribution

    Quantum control and the Strocchi map

    Get PDF
    Identifying the real and imaginary parts of wave functions with coordinates and momenta, quantum evolution may be mapped onto a classical Hamiltonian system. In addition to the symplectic form, quantum mechanics also has a positive-definite real inner product which provides a geometrical interpretation of the measurement process. Together they endow the quantum Hilbert space with the structure of a K\"{a}ller manifold. Quantum control is discussed in this setting. Quantum time-evolution corresponds to smooth Hamiltonian dynamics and measurements to jumps in the phase space. This adds additional power to quantum control, non unitarily controllable systems becoming controllable by ``measurement plus evolution''. A picture of quantum evolution as Hamiltonian dynamics in a classical-like phase-space is the appropriate setting to carry over techniques from classical to quantum control. This is illustrated by a discussion of optimal control and sliding mode techniques.Comment: 16 pages Late

    Hamiltonians separable in cartesian coordinates and third-order integrals of motion

    Full text link
    We present in this article all Hamiltonian systems in E(2) that are separable in cartesian coordinates and that admit a third-order integral, both in quantum and in classical mechanics. Many of these superintegrable systems are new, and it is seen that there exists a relation between quantum superintegrable potentials, invariant solutions of the Korteweg-De Vries equation and the Painlev\'e transcendents.Comment: 19 pages, Will be published in J. Math. Phy

    QCD at small x and nucleus-nucleus collisions

    Get PDF
    At large collision energy sqrt(s) and relatively low momentum transfer Q, one expects a new regime of Quantum Chromo-Dynamics (QCD) known as "saturation". This kinematical range is characterized by a very large occupation number for gluons inside hadrons and nuclei; this is the region where higher twist contributions are as large as the leading twist contributions incorporated in collinear factorization. In this talk, I discuss the onset of and dynamics in the saturation regime, some of its experimental signatures, and its implications for the early stages of Heavy Ion Collisions.Comment: Plenary talk given at QM2006, Shanghai, November 2006. 8 pages, 8 figure

    Solvable three-state model of a driven double-well potential and coherent destruction of tunneling

    Get PDF
    A simple model for a particle in a double well is derived from discretizing its configuration space. The model contains as many free parameters as the original system and it respects all the existing symmetries. In the presence of an external periodic force both the continuous system and the discrete model are shown to possess a generalized time-reversal symmetry in addition to the known generalized parity. The impact of the driving force on the spectrum of the Floquet operator is studied. In particular, the occurrence of degenerate quasienergies causing coherent destruction of tunneling is discussed—to a large extent analytically—for arbitrary driving frequencies and barrier heights

    Maximal couplings in PT-symmetric chain-models with the real spectrum of energies

    Full text link
    The domain D{\cal D} of all the coupling strengths compatible with the reality of the energies is studied for a family of non-Hermitian NN by NN matrix Hamiltonians H(N)H^{(N)} with tridiagonal and PT{\cal PT}-symmetric structure. At all dimensions NN, the coordinates are found of the extremal points at which the boundary hypersurface D\partial {\cal D} touches the circumscribed sphere (for odd N=2M+1N=2M+1) or ellipsoid (for even N=2KN=2K).Comment: 18 pp., 2 fig

    Time evolution of non-Hermitian Hamiltonian systems

    Get PDF
    We provide time-evolution operators, gauge transformations and a perturbative treatment for non-Hermitian Hamiltonian systems, which are explicitly time-dependent. We determine various new equivalence pairs for Hermitian and non-Hermitian Hamiltonians, which are therefore pseudo-Hermitian and in addition in some cases also invariant under PT-symmetry. In particular, for the harmonic oscillator perturbed by a cubic non-Hermitian term, we evaluate explicitly various transition amplitudes, for the situation when these systems are exposed to a monochromatic linearly polarized electric field.Comment: 25 pages Latex, 1 eps figure, references adde

    Superintegrability with third order invariants in quantum and classical mechanics

    Full text link
    We consider here the coexistence of first- and third-order integrals of motion in two dimensional classical and quantum mechanics. We find explicitly all potentials that admit such integrals, and all their integrals. Quantum superintegrable systems are found that have no classical analog, i.e. the potentials are proportional to \hbar^2, so their classical limit is free motion.Comment: 15 page

    Random walks of partons in SU(N_c) and classical representations of color charges in QCD at small x

    Full text link
    The effective action for wee partons in large nuclei includes a sum over static color sources distributed in a wide range of representations of the SU(N_c) color group. The problem can be formulated as a random walk of partons in the N_c-1 dimensional space spanned by the Casimirs of SU(N_c). For a large number of sources, k >> 1, we show explicitly that the most likely representation is a classical representation of order O(\sqrt{k}). The quantum sum over representations is well approximated by a path integral over classical sources with an exponential weight whose argument is the quadratic Casimir operator of the group. The contributions of the higher N_c-2 Casimir operators are suppressed by powers of k. Other applications of the techniques developed here are discussed briefly.Comment: 51 pages, includes 3 eps file
    corecore