93 research outputs found

    Analysis of differential gene expression in human melanocytic tumour lesions by custom made oligonucleotide arrays

    Get PDF
    Melanoma is one of the most aggressive types of cancer and resection of the tumour prior to dissemination of tumour cells is still the most effective treatment. Therefore, early diagnosis of melanocytic lesions is important and identification of novel (molecular) markers would be helpful to improve diagnosis. Moreover, better understanding of molecular targets involved in melanocytic tumorigenesis could possibly lead to development of novel interventions. In this study, we used a custom made oligonucleotide array containing 298 genes that were previously found to be differentially expressed in human melanoma cell lines 1F6 (rarely metastasising) and Mel57 (frequently metastasising). We determined differential gene expression in human common nevocellular nevus and melanoma metastasis lesions. By performing nine dye-swap array experiments, using individual as well as pooled melanocytic lesions, a constant differential expression could be detected for 25 genes in eight out of nine or nine out of nine array analyses. For at least nine of these genes, namely THBD, FABP7, H2AFJ, RRAGD, MYADM, HR, CKS2, NCK2 and GDF15, the differential expression found by array analyses could be verified by semiquantitative and/or real-time quantitative RT–PCR. The genes that we identified to be differentially expressed during melanoma progression could be potent targets for diagnostic, prognostic and/or therapeutic interventions

    Community health workers for ART in sub-Saharan Africa: learning from experience – capitalizing on new opportunities

    Get PDF
    Low-income countries with high HIV/AIDS burdens in sub-Saharan Africa must deal with severe shortages of qualified human resources for health. This situation has triggered the renewed interest in community health workers, as they may play an important role in scaling-up antiretroviral treatment for HIV/AIDS by taking over a number of tasks from the professional health workers. Currently, a wide variety of community health workers are active in many antiretroviral treatment delivery sites

    ALCAM (CD166) Expression and Serum Levels in Pancreatic Cancer

    Get PDF
    BACKGROUND: This study was conducted to evaluate the expression of the activated leukocyte cell adhesion molecule (ALCAM) in pancreatic cancer (PAC) and to determine whether or not the ectodomain shedding of ALCAM (s-ALCAM) could serve as a biomarker in the peripheral blood of PAC patients. MATERIAL AND METHODS: Tissue specimens and blood sera of patients with PAC (n = 264 and n = 116, respectively) and the sera of 115 patients with chronic pancreatitis (CP) were analyzed via ALCAM immunohistochemistry and s-ALCAM ELISA tests. Results were correlated with clinical, histopathological, and patient survival data (Chi-square test, Kaplan-Meier analysis, log-rank test, respectively). RESULTS: ALCAM was expressed in the majority of PAC lesions. Immunohistochemistry and serum ELISA tests revealed no association between ALCAM expression in primary tumors or s-ALCAM and clinical or histopathological data. Neither ALCAM nor s-ALCAM showed a significant impact regarding overall survival (p = 0.261 and p = 0.660, respectively). S-ALCAM serum levels were significantly elevated compared to the sera of CP patients (p<0.001). The sensitivity of s-ALCAM in detecting PAC was 58.6% at a specificity of 73.9% (AUC = 0.69). CONCLUSIONS: ALCAM is expressed in the majority of PAC lesions, but statistical analysis revealed no association with clinical or pathological data. Although significantly elevated in patients with PAC, the sensitivity and specificity of the s-ALCAM serum quantification test was low. Therefore, its potential as a novel diagnostic marker for PAC remains elusive and further investigations are required

    Application guide for omics approaches to cell signaling

    Get PDF
    Research in signal transduction aims to identify the functions of different signaling pathways in physiological and pathological states. Traditional techniques using biochemical, genetic or cell biological approaches have made important contributions to our understanding of cellular signaling. However, the single-gene approach does not take into account the full complexity of cell signaling. With the availability of omics techniques, great progress has been made in understanding signaling networks. Omics approaches can be classified into two categories: 'molecular profiling', including genomic, proteomic, post-translational modification and interactome profiling; and 'molecular perturbation', including genetic and functional perturbations

    The Global Reach of HIV/AIDS: Science, Politics, Economics, and Research

    Full text link

    Comprehensive Profiling of N‑Linked Glycosylation Sites in HeLa Cells Using Hydrazide Enrichment

    Get PDF
    The adenocarcinoma cell line HeLa serves as a model system for cancer research in general and cervical cancer in particular. In this study, hydrazide enrichment in combination with state-of-the art nanoLC−MS/MS analysis was used to profile N-linked glycosites in HeLa cells. N-Linked glycoproteins were selectively enriched in HeLa cells by the hydrazide capture method, which isolates all glycoproteins independent of their glycans. Nonglycosylated proteins were removed by extensive washing. N-Linked glycoproteins were identified with the specific NXT/S motif and deamidated asparagine (N). Deglycosylation was carried out in both H_2 (^16)O and H_2 ^(18)O to confirm the deamidation. NanoLC−MS/MS analysis indicated that the method selectively enriched at least 100 fold N-linked glycosites in HeLa cells. When both the membrane and cytosolic fractions were used, a total of 268 unique N-glycosylation sites were identified corresponding to 106 glycoproteins. Bioinformatic analysis revealed that most of the glycoproteins identified are known to have an impact on cancer and have been proposed as biomarkers

    Involvement of Pa/Plasmin System in the Processing of Pro-Mmp-9 and in the Second Step of Pro-Mmp-2 Activation

    Full text link
    Pro-MMP2 activation is a two-step process resulting in (1) an intermediate 64 kDa form generated by the MT1-MMP activity, and (2) a mature 62 kDa form. Addition of plasminogen to HT1080 cells cultured under various conditions, or to their membrane preparation, induced a complete conversion of the intermediate MMP-2 form to the mature one, and processing of pro-MMP-9. The pro-MMP-2 activation was inhibited by plasmin inhibitors and anti-uPA antibody. These results provide evidence for involvement of the PA/plasmin system in the second step of MMP-2 activation
    • …
    corecore