17 research outputs found
Self-assembly of photo-crosslinkable block copolymers and their application in 3D printing
Natural materials are composed of a limited number of molecular building blocks, e.g. amino acids, carbohydrates), and their exceptional properties are governed by their intricate hierarchical structure on multiple length scales. While 3D printing has emerged as the standard method for the precise fabrication of minute devices, this level of precision is unattainable with current state-of-the-art materials for 3D printing.
A common method of obtaining such nanoscale structure in systematic systems exploits the potential for polymers to self-assemble under certain conditions. One important class of polymers which has the ability to form self-assembled structures at a scale of 5- 50 nm are amphiphilic block copolymers. They are tunable over a broad variety of morphologies, ranging from micelles and vesicles to continuous network structures, which can form in both undiluted melt or solution. While these properties have been extensively investigated in 2D films, they have not yet been exploited to generate 3D structures entailing high resolution features, complex geometries and a controlled nanostructure.
To that end, in the current PhD thesis, new self-assembled printable materials based on block copolymers (BCPs) that enable precise control of the nanostructure in 3D are investigated. In particular, well-defined BCPs consisting of a poly(styrene) block and a poly(methacrylate)-based copolymer decorated with printable units are selected as suitable self-assembling materials. A broad library of BCPs with different compositions and molecular weight is synthesized using controlled radical polymerization. A subsequent extensive investigation of the phase behavior before and after the functionalization is performed using SAXS, SEM, and SNOM. Lamellar, cylindrical and gyroid morphologies are observed dependent on the composition as well as the molecular weight, allowing the phase diagram of the system to be generated. The dependency of the domain spacing d on the molecular weight of the polymer is found to be described by a power law, which is in accordance with that published for other systems both experimentally as well as in theory.
The synthesized library of BCPs is then utilized to create printable formulations for the fabrication of complex 3D microstructures using two-photon laser printing. By fine-tuning the BCP composition and solvent in the formulations, the fabrication of precise 3D nano-ordered structures is demonstrated for the first time. Hereby, the key achievement is a controlled nano-order within the entirety of the 3D structures. To show this, imaging of the cross-sections of the 3D printed samples is performed, enabling visualization also from the inside. A detailed view of both lamellar as well as cylindrical morphology, dependent on the polymer design, is presented. The morphologies are fitting well with those found in the respective bulk polymer analysis, as well as SAXS measurements of the printing ink formulation
COVID-19—from mucosal immunology to IBD patients
Viral infections with SARS-CoV-2 can cause a multi-facetted disease, which is not only characterized by pneumonia and overwhelming systemic inflammatory immune responses, but which can also directly affect the digestive system and infect intestinal epithelial cells. Here, we review the current understanding of intestinal tropism of SARS-CoV-2 infection, its impact on mucosal function and immunology and summarize the effect of immune-suppression in patients with inflammatory bowel disease (IBD) on disease outcome of COVID-19 and discuss IBD-relevant implications for the clinical management of SARS-CoV-2 infected individuals
Adipokines and Their Role in Intestinal Inflammation
Fat tissue was initially described for its endocrine and metabolic function. Over the last two decades increasing evidence indicated a close interaction with the immune system. Partly responsible for this immune modulatory function are soluble factors released by the fat tissue, most prominently the so-called adipokines. These discoveries led to the question how adipokines influence inflammatory diseases. Linking inflammation and adipose tissue, Crohn's disease, a chronic inflammatory bowel disease, is of particular interest for studying the immune modulatory properties of adipokines since it is characterized by a hyperplasia of the mesenteric fat that subsequently is creeping around the inflamed segments of the small intestine. Thus, the role of several adipokines in the creeping fat as well as in intestinal inflammation was recently explored. The present review selected the four adipokines adiponectin, apelin, chemerin, and leptin and provides a working model based on the available literature how these factors participate in the maintenance of intestinal immune homeostasis
Multi-parameter immune profiling of peripheral blood mononuclear cells by multiplexed single-cell mass cytometry in patients with early multiple sclerosis
Multiple sclerosis (MS) is an inflammatory demyelinating and neurodegenerative disease of the central nervous system (CNS). Studies in rodent models demonstrated an association of CNS-infiltrating monocyte-derived macrophages with disease severity. However, little is known about humans. Here, we performed an exploratory analysis of peripheral blood mononuclear cells (PBMCs) isolated from healthy controls and drug-naïve patients with early MS using multiplexed single-cell mass cytometry and algorithm-based data analysis. Two antibody panels comprising a total of 64 antibodies were designed to comprehensively analyse diverse immune cell populations, with particular emphasis on monocytes. PBMC composition and marker expression were overall similar between the groups. However, an increased abundance of CCR7+ and IL-6+ T cells was detected in early MS-PBMCs, whereas NFAT1hiT-bethiCD4+ T cells were decreased. Similarly, we detected changes in the subset composition of the CCR7+ and MIPβhi HLA-DR+ lymphocyte compartment. Only mild alterations were detected in monocytes/myeloid cells of patients with early MS, namely a decreased abundance of CD141hiIRF8hiCXCR3+CD68- dendritic cells. Unlike in Crohn's disease, no significant differences were found in the monocyte fraction of patients with early MS compared to healthy controls. This study provides a valuable resource for future studies designed to characterise and target diverse PBMC subsets in MS
3D Printing Hierarchically Nano‐Ordered Structures
Natural materials are composed of a limited number of molecular building blocks and their exceptional properties are governed by their hierarchical structure. However, this level of precision is unattainable with current state-of-the-art materials for 3D printing. Herein, new self-assembled printable materials based on block copolymers (BCPs) enabling precise control of the nanostructure in 3D are presented. In particular, well-defined BCPs consisting of poly(styrene) (PS) and a polymethacrylate-based copolymer decorated with printable units are selected as suitable self-assembled materials and synthesized using controlled radical polymerization. The synthesized library of BCPs are utilized as printable formulations for the fabrication of complex 3D microstructures using two-photon laser printing. By fine-tuning the BCP composition and solvent in the formulations, the fabrication of precise 3D nano-ordered structures is demonstrated for the first time. A key point of this work is the achievement of controlled nano-order within the entire 3D structures. Thus, imaging of the cross-sections of the 3D printed samples is performed, enabling the visualization also from the inside. The presented versatile approach is expected to create new avenues for the precise design of functional polymer materials suitable for high-resolution 3D printing exhibiting tailor-made nanostructures
Deconstructing 3D Structured Materials by Modern Ultramicrotomy for Multimodal Imaging and Volume Analysis across Length Scales
Based on the rapid advances in additive manufacturing, micro-patterned heterostructures of soft materials have become available that need to be characterized down to the nanoscale. Advanced function-structure relationships are designed by direct 3D structuring of the object and – in the future – fine control over material functionality in 3D will produce complex functional objects. To control their design, fabrication and final structure, morphological and spectroscopical imaging in 3D at nanometer resolution are critically required. With examples of carbon-based objects, it is demonstrated how serial ultramicrotomy, that is, cutting a large number of successive ultrathin sections, can be utilized to gain access to the interior of 3D objects. Array tomography, hierarchical imaging and correlative light and electron microscopy can bridge length scales over several orders of magnitude and provide multimodal information of the sample\u27s inner structure. Morphology data derived from scanning electron microscopy are correlated with spectroscopy in analytical transmission electron microscopy and probe microscopy at nanometer resolution, using TEM-electron energy loss spectroscopy and infrared-scanning-near-field microscopy. The correlation of different imaging modalities and spectroscopy of carbon-based materials in 3D provides a powerful toolbox of complementary techniques for understanding emerging functions from nanoscopic structuring
Human small intestinal infection by SARS-CoV-2 is characterized by a mucosal infiltration with activated CD8+ T cells
The SARS-CoV-2 pandemic has so far claimed over three and a half million lives worldwide. Though the SARS-CoV-2 mediated disease COVID-19 has first been characterized by an infection of the upper airways and the lung, recent evidence suggests a complex disease including gastrointestinal symptoms. Even if a direct viral tropism of intestinal cells has recently been demonstrated, it remains unclear, whether gastrointestinal symptoms are caused by direct infection of the gastrointestinal tract by SARS-CoV-2 or whether they are a consequence of a systemic immune activation and subsequent modulation of the mucosal immune system. To better understand the cause of intestinal symptoms we analyzed biopsies of the small intestine from SARS-CoV-2 infected individuals. Applying qRT-PCR and immunohistochemistry, we detected SARS-CoV-2 RNA and nucleocapsid protein in duodenal mucosa. In addition, applying imaging mass cytometry and immunohistochemistry, we identified histomorphological changes of the epithelium, which were characterized by an accumulation of activated intraepithelial CD8(+) T cells as well as epithelial apoptosis and subsequent regenerative proliferation in the small intestine of COVID-19 patients. In summary, our findings indicate that intraepithelial CD8(+) T cells are activated upon infection of intestinal epithelial cells with SARS-CoV-2, providing one possible explanation for gastrointestinal symptoms associated with COVID-19
Store-operated calcium entry controls innate and adaptive immune cell function in inflammatory bowel disease
Inflammatory bowel disease (IBD) is characterized by dysregulated intestinal immune responses. Using mass cytometry (CyTOF) to analyze the immune cell composition in the lamina propria (LP) of patients with ulcerative colitis (UC) and Crohn's disease (CD), we observed an enrichment of CD(4+) effector T cells producing IL-17A and TNF, CD(8+) T cells producing IFNγ, T regulatory (Treg) cells, and innate lymphoid cells (ILC). The function of these immune cells is regulated by store-operated Ca(2+) entry (SOCE), which results from the opening of Ca(2+) release-activated Ca(2+) (CRAC) channels formed by ORAI and STIM proteins. We observed that the pharmacologic inhibition of SOCE attenuated the production of proinflammatory cytokines including IL-2, IL-4, IL-6, IL-17A, TNF, and IFNγ by human colonic T cells and ILCs, reduced the production of IL-6 by B cells and the production of IFNγ by myeloid cells, but had no effect on the viability, differentiation, and function of intestinal epithelial cells. T cell-specific deletion of CRAC channel genes in mice showed that Orai1, Stim1, and Stim2-deficient T cells have quantitatively distinct defects in SOCE, which correlate with gradually more pronounced impairment of cytokine production by Th1 and Th17 cells and the severity of IBD. Moreover, the pharmacologic inhibition of SOCE with a selective CRAC channel inhibitor attenuated IBD severity and colitogenic T cell function in mice. Our data indicate that SOCE inhibition may be a suitable new approach for the treatment of IBD