16 research outputs found

    Mineralogy of the Mercurian Surface

    Get PDF
    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft orbited Mercury for four years until April 2015, revealing its structure, chemical makeup, and compositional diversity. Data from the mission have confirmed that Mercury is a compositional end-member among the terrestrial planets. The X-Ray Spectrometer (XRS) and Gamma-Ray Spectrometer (GRS) on board MESSENGER provided the first detailed geochemical analyses of Mercury's surface. These instruments have been used in conjunction with the Neutron Spectrometer and the Mercury Dual Imaging System to classify numerous geological and geochemical features on the surface of Mercury that were previously unknown. Furthermore, the data have revealed several surprising characteristics about Mercury's surface, including elevated S abundances (up to 4 wt%) and low Fe abundances (less than 2.5 wt%). The S and Fe abundances were used to quantify Mercury's highly reduced state, i.e., between 2.6 and 7.3 log10 units below the Iron-Wustite (IW) buffer. This fO2 is lower than any of the other terrestrial planets in the inner Solar System and has important consequences for the thermal and magmatic evolution of Mercury, its surface mineralogy and geochemistry, and the petrogenesis of the planet's magmas. Although MESSENGER has revealed substantial geochemical diversity across the surface of Mercury, until now, there have been only limited efforts to understand the mineralogical and petrological diversity of the planet. Here we present a systematic and comprehensive study of the potential mineralogical and petrological diversity of Mercury

    Chemical Heterogeneity on Mercury's Surface Revealed by the MESSENGER X-Ray Spectrometer

    Get PDF
    We present the analysis of 205 spatially resolved measurements of the surface composition of Mercury from MESSENGER's X-Ray Spectrometer. The surface footprints of these measurements are categorized according to geological terrain. Northern smooth plains deposits and the plains interior to the Caloris basin differ compositionally from older terrain on Mercury. The older terrain generally has higher Mg/Si, S/Si, and Ca/Si ratios, and a lower Al/Si ratio than the smooth plains. Mercury's surface mineralogy is likely dominated by high-Mg mafic minerals (e.g., enstatite), plagioclase feldspar, and lesser amounts of Ca, Mg, and/or Fe sulfides (e.g., oldhamite). The compositional difference between the volcanic smooth plains and the older terrain reflects different abundances of these minerals and points to the crystallization of the smooth plains from a more chemically evolved magma source. High-degree partial melts of enstatite chondrite material provide a generally good compositional and mineralogical match for much of the surface of Mercury. An exception is Fe, for which the low surface abundance on Mercury is still higher than that of melts from enstatite chondrites and may indicate an exogenous contribution from meteoroid impacts

    Variations in the Abundances of Potassium and Thorium on the Surface of Mercury: Results from the MESSENGER Gamma-Ray Spectrometer

    Get PDF
    A technique for converting gamma-ray count rates measured by the Gamma-Ray Spectrometer on the MESSENGER spacecraft to spatially resolved maps of the gamma-ray emission from the surface of Mercury is utilized to map the surface distributions of the elements Si, O, and K over the planet's northern hemisphere. Conversion of the K gamma-ray count rates to elemental abundances on the surface reveals variations from 300 to 2400 ppm. A comparison of these abundances with models for the maximum surface temperature suggests the possibility that a temperature-related process is controlling the K abundances on the surface as well as providing K to the exosphere. The abundances of K and Th have been determined for several geologically distinct regions, including Mercury's northern smooth plains and the plains interior to the Caloris basin. The lack of a significant variation in the measured Th abundances suggests that there may be considerable variability in the K/Th abundance ratio over the mapped regions

    Major-Element Abundances on the Surface of Mercury: Results from the MESSENGER Gamma-Ray Spectrometer

    Get PDF
    Orbital gamma-ray measurements obtained by the MESSENGER spacecraft have been analyzed to determine the abundances of the major elements Al, Ca, S, Fe, and Na on the surface of Mercury. The Si abundance was determined and used to normalize those of the other reported elements. The Na analysis provides the first abundance estimate of 2.9 plus or minus 0.1 wt% for this element on Mercury's surface. The other elemental results (S/Si = 0.092 plus or minus 0.015, Ca/Si = 0.24 plus or minus 0.05, and Fe/Si = 0.077 plus or minus 0.013) are consistent with those previously obtained by the MESSENGER X-Ray Spectrometer, including the high sulfur and low iron abundances. Because of different sampling depths for the two techniques, this agreement indicates that Mercury's regolith is, on average, homogenous to a depth of tens of centimeters. The elemental results from gamma-ray and X-ray spectrometry are most consistent with petrologic models suggesting that Mercury's surface is dominated by Mg-rich silicates. We also compare the results with those obtained during the MESSENGER flybys and with ground-based observations of Mercury's surface and exosphere

    The Redox State, FeO Content, and Origin of Sulfur-Rich Magmas on Mercury

    Get PDF
    MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) orbital observations of Mercury have revealed elevated S abundances, Ca-S and Mg-S correlations, and a low upper limit for ferrous iron in surface silicates. These data indicate the presence of Ca and/or Mg sulfides in volcanic rocks and a low oxygen fugacity (fO2) in their parental magmas. We have evaluated coupled fO2 and fS2 values and FeO contents in Mercury's magmas from silicate-sulfide equilibria and empirical models for silicate melts and metallurgical slags. The evaluated fO2 at 1700-1800 K is 4.5 to 7.3 log10 units below the iron-wĂŒstite buffer. These values correspond to 0.028-0.79 wt % FeO, implying that Fe must be also present in sulfides and metal and are also consistent with the composition of the partial melt of an enstatite chondrite. This derived upper limit for FeO is substantially lower than the limits obtained from reflectance measurements of Mercury's surface materials. The low fO2 and FeO values provide new constraints for igneous processes on Mercury as well as the formation, evolution, and internal structure of the innermost planet

    Paleomagnetic determination of emplacement temperatures of pyroclastic deposits: An under-utilized tool

    Get PDF
    Paleomagnetic data from lithic clasts collected from Mt. St. Helens, USA, VolcĂĄn LĂĄscar, Chile, VolcĂĄn de Colima, Mexico and Vesuvius, Italy have been used to determine the emplacement temperature of pyroclastic deposits at these localities and to highlight the usefulness of the paleomagnetic method for determining emplacement temperatures. At Mt. St. Helens, the temperature of the deposits (Tdep) at three sites from the June 12, 1980 eruption was found to be ≄532°C, ≄509°C, and 510-570°C, respectively. One site emplaced on July 22, 1980 was emplaced at ≄577°C. These new paleomagnetic temperatures are in good agreement with previously published direct temperature measurements and paleomagnetic estimates. Lithic clasts from pyroclastic deposits from the 1993 eruption of LĂĄscar were fully remagnetized above the respective Curie temperatures, which yielded a minimum Tdep of 397°C. Samples were also collected from deposits thought to be pyroclastics from the 1913, 2004 and 2005 eruptions of Colima. At Colima, the sampled clasts were emplaced cold. This is consistent with the sampled clasts being from lahar deposits, which are common in the area, and illustrates the usefulness of the paleomagnetic method for distinguishing different types of deposit. Tdep of the lower section of the lithic rich pyroclastic flow (LRPF) from the 472 A. D. deposits of Vesuvius was ~280-340°C. This is in agreement with other, recently published paleomagnetic measurements. In contrast, the upper section of the LRPF was emplaced at higher temperatures, with Tdep ~520°C. This temperature difference is inferred to be the result of different sources of lithic clasts between the upper and lower sections, with the upper section containing a greater proportion of vent-derived material that was initially hot. Our studies of four historical pyroclastic deposits demonstrates the usefulness of paleomagnetism for emplacement temperature estimation.Fil: Paterson, Greig A.. University of Southampton; Reino UnidoFil: Roberts, Andrew P.. University of Southampton; Reino UnidoFil: Mac Niocaill, Conall. University of Oxford; Reino UnidoFil: Muxworthy, Adrian R.. Imperial College London; Reino UnidoFil: Gurioli, Lucia. University of Hawaii; Estados UnidosFil: Viramonte, Jose German. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Salta. Instituto de Investigaciones en EnergĂ­a no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de FĂ­sica. Instituto de Investigaciones en EnergĂ­a no Convencional; ArgentinaFil: Navarro, Carlos. Universidad de Colima; MĂ©xicoFil: Weider, Shoshana. University of Oxford; Reino Unid
    corecore