2,446 research outputs found

    Plasma Lens Backgrounds at a Future Linear Collider

    Full text link
    A 'plasma lens' might be used to enhance the luminosity of future linear colliders. However, its utility for this purpose depends largely on the potential backgrounds that may be induced by the insertion of such a device in the interaction region of the detector. In this note we identify different sources of such backgrounds, calculate their event rates from the elementary interaction processes, and evaluate their effects on the major parts of a hypothetical Next Linear Collider (NLC) detector. For plasma lens parameters which give a factor of seven enhancement of the luminosity, and using the NLC design for beam parameters as a reference, we find that the background yields are fairly high, and require further study and improvements in detector technology to avoid their impact.Comment: 14 pages incl. 3 figures; contributed to the 4th International Workshop, Electron-Electron Interactions at TeV Energies, Santa Cruz, California, Dec. 7 - 9, 2001. To be published in Int.Journ. Mod. Phys.

    An Ultraluminous Supersoft X-ray Source in M81: An Intermediate-Mass Black Hole?

    Full text link
    Ultraluminous supersoft X-ray sources (ULSSS) exhibit supersoft spectra with blackbody temperatures of 50-100 eV and bolometric luminosities above 103910^{39} erg s−1^{-1}, and are possibly intermediate mass black holes (IMBHs) of ≄103M⊙\ge10^3 M_\odot or massive white dwarfs that are progenitors of type Ia supernovae. In this letter we report our optical studies of such a source in M81, M81-ULS1, with HST archive observations. M81-ULS1 is identified with a point-like object, the spectral energy distribution of which reveals a blue component in addition to the companion of an AGB star. The blue component is consistent with the power-law as expected from the geometrically-thin accretion disk around an IMBH accretor, but inconsistent with the power-law as expected from the X-ray irradiated flared accretion disk around a white dwarf accretor. This result is strong evidence that M81-ULS1 is an IMBH instead of a white dwarf.Comment: 12 pages, 1 table, 3 figure

    Human substantia nigra neurons encode unexpected financial rewards

    Get PDF
    The brain's sensitivity to unexpected outcomes plays a fundamental role in an\ud organism's ability to adapt and learn new behaviors. Emerging research suggests that\ud midbrain dopaminergic neurons encode these unexpected outcomes. We used\ud microelectrode recordings during deep brain stimulation surgery to study neuronal activity in\ud the human substantia nigra (SN) while patients with Parkinson's disease engaged in a\ud probabilistic learning task motivated by virtual financial rewards. Based on a model of the ..

    The Core Composition of a White Dwarf in a Close Double Degenerate System

    Full text link
    We report the identification of the double degenerate system NLTT 16249 that comprises a normal, hydrogen-rich (DA) white dwarf and a peculiar, carbon-polluted white dwarf (DQ) showing photospheric traces of nitrogen. We disentangled the observed spectra and constrained the properties of both stellar components. In the evolutionary scenario commonly applied to the sequence of DQ white dwarfs, both carbon and nitrogen would be dredged up from the core. The C/N abundance ratio (~ 50) in the atmosphere of this unique DQ white dwarf suggests the presence of unprocessed material (14N) in the core or in the envelope. Helium burning in the DQ progenitor may have terminated early on the red-giant branch after a mass-ejection event leaving unprocessed material in the core although current mass estimates do not favor the presence of a low-mass helium core. Alternatively, some nitrogen in the envelope may have survived an abridged helium-core burning phase prior to climbing the asymptotic giant-branch. Based on available data, we estimate a relatively short orbital period (P <~ 13 hrs) and on-going spectroscopic observations will help determine precise orbital parameters.Comment: Accepted for publication in ApJ Letter

    Neuronal Activity in the Human Subthalamic Nucleus Encodes Decision Conflict during Action Selection

    Get PDF
    The subthalamic nucleus (STN), which receives excitatory inputs from the cortex and has direct connections with the inhibitory pathways\ud of the basal ganglia, is well positioned to efficiently mediate action selection. Here, we use microelectrode recordings captured during\ud deep brain stimulation surgery as participants engage in a decision task to examine the role of the human STN in action selection. We\ud demonstrate that spiking activity in the STN increases when participants engage in a decision and that the level of spiking activity\ud increases with the degree of decision conflict. These data implicate the STN as an important mediator of action selection during decision\ud processes.\u

    The Extent and Cause of the Pre-White Dwarf Instability Strip

    Get PDF
    One of the least understood aspects of white dwarf evolution is the process by which they are formed. We are aided, however, by the fact that many H- and He-deficient pre-white dwarfs (PWDs) are multiperiodic g-mode pulsators. Pulsations in PWDs provide a unique opportunity to probe their interiors, which are otherwise inaccesible to direct observation. Until now, however, the nature of the pulsation mechanism, the precise boundaries of the instability strip, and the mass distribution of the PWDs were complete mysteries. These problems must be addressed before we can apply knowledge of pulsating PWDs to improve understanding of white dwarf formation. This paper lays the groundwork for future theoretical investigations of these stars. In recent years, Whole Earth Telescope observations led to determination of mass and luminosity for the majority of the (non-central star) PWD pulsators. With these observations, we identify the common properties and trends PWDs exhibit as a class. We find that pulsators of low mass have higher luminosity, suggesting the range of instability is highly mass-dependent. The observed trend of decreasing periods with decreasing luminosity matches a decrease in the maximum (standing-wave) g-mode period across the instability strip. We show that the red edge can be caused by the lengthening of the driving timescale beyond the maximum sustainable period. This result is general for ionization-based driving mechanisms, and it explains the mass-dependence of the red edge. The observed form of the mass-dependence provides a vital starting point for future theoretical investigations of the driving mechanism. We also show that the blue edge probably remains undetected because of selection effects arising from rapid evolution.Comment: 40 pages, 6 figures, accepted by ApJ Oct 27, 199

    The Future is Now: the Formation of Single Low Mass White Dwarfs in the Solar Neighborhood

    Get PDF
    Low mass helium-core white dwarfs (M < 0.45 Msun) can be produced from interacting binary systems, and traditionally all of them have been attributed to this channel. However, a low mass white dwarf could also result from a single star that experiences severe mass loss on the first ascent giant branch. A large population of low mass He-core white dwarfs has been discovered in the old metal-rich cluster NGC 6791. There is therefore a mechanism in clusters to produce low mass white dwarfs without requiring binary star interactions, and we search for evidence of a similar population in field white dwarfs. We argue that there is a significant field population (of order half of the detected systems) that arises from old metal rich stars which truncate their evolution prior to the helium flash from severe mass loss. There is a consistent absence of evidence for nearby companions in a large fraction of low mass white dwarfs. The number of old metal-rich field dwarfs is also comparable with the apparently single low mass white dwarf population, and our revised estimate for the space density of low mass white dwarfs produced from binary interactions is also compatible with theoretical expectations. This indicates that this channel of stellar evolution, hitherto thought hypothetical only, has been in operation in our own Galaxy for many billions of years. One strong implication of our model is that single low mass white dwarfs should be good targets for planet searches because they are likely to arise from metal-rich progenitors. We also discuss other observational tests and implications, including the potential impact on SN Ia rates and the frequency of planetary nebulae.Comment: ApJ published versio

    Detailed Spectroscopic and Photometric Analysis of DQ White Dwarfs

    Full text link
    We present an analysis of spectroscopic and photometric data for cool DQ white dwarfs based on improved model atmosphere calculations. In particular, we revise the atmospheric parameters of the trigonometric parallax sample of Bergeron et al.(2001), and discuss the astrophysical implications on the temperature scale and mean mass, as well as the chemical evolution of these stars. We also analyze 40 new DQ stars discovered in the first data release of the Sloan Digital Sky Survey.Comment: 6 pages,3 figures, 14th European Workshop on White Dwarfs, ASP Conference Series, in pres

    Near-Infrared Constraints on the Presence of Warm Dust at Metal-Rich, Helium Atmosphere White Dwarfs

    Get PDF
    Here, we present near-infrared spectroscopic observations of 15 helium atmosphere, metal-rich white dwarfs obtained at the NASA Infrared Telescope Facility. While a connection has been demonstrated between the most highly polluted, hydrogen atmosphere white dwarfs and the presence of warm circumstellar dust and gas, their frequency at the helium atmosphere variety is poorly constrained. None of our targets show excess near-infrared radiation consistent with warm orbiting material. Adding these near-infrared constraints to previous near- and mid-infrared observations, the frequency of warm circumstellar material at metal-bearing white dwarfs is at least 20% for hydrogen-dominated photospheres, but could be less than 5% for those effectively composed of helium alone. The lower occurrence of dust disks around helium atmosphere white dwarfs is consistent with Myr timescales for photospheric metals in massive convection zones. Analyzing the mass distribution of 10 white dwarfs with warm circumstellar material, we search for similar trends between the frequency of disks and the predicted frequency of massive planets around intermediate mass stars, but find the probability that disk-bearing white dwarfs are more massive than average is not significant.Comment: AJ, in pres

    The Early Palomar Program (1950-1955) for the Discovery of Classical Novae in M81: Analysis of the Spatial Distribution, Magnitude Distribution, and Distance Suggestion

    Get PDF
    Data obtained in the 1950-1955 Palomar campaign for the discovery of classical novae in M81 are set out in detail. Positions and apparent B magnitudes are listed for the 23 novae that were found. There is modest evidence that the spatial distribution of the novae does not track the B brightness distribution of either the total light or the light beyond an isophotal radius that is 70\arcsec from the center of M81. The nova distribution is more extended than the aforementioned light, with a significant fraction of the sample appearing in the outer disk/spiral arm region. We suggest that many (perhaps a majority) of the M81 novae that are observed at any given epoch (compared with say 101010^{10} years ago) are daughters of Population I interacting binaries. The conclusion that the present day novae are drawn from two population groups, one from low mass white dwarf secondaries of close binaries identified with the bulge/thick disk population, and the other from massive white dwarf secondaries identified with the outer thin disk/spiral arm population, is discussed. We conclude that the M81 data are consistent with the two population division as argued previously from (1) the observational studies on other grounds by Della Valle et al. (1992, 1994), Della Valle & Livio (1998), and Shafter et al. (1996) of nearby galaxies, (2) the Hatano et al. (1997a,b) Monte Carlo simulations of novae in M31 and in the Galaxy, and (3) the Yungelson et al. (1997) population synthesis modeling of nova binaries. Two different methods of using M81 novae as distance indicators give a nova distance modulus for M81 as (m−M)0=27.75(m-M)_0 = 27.75, consistent with the Cepheid modulus that is the same value.Comment: 24 pages, 7 figures, accepted to PAS
    • 

    corecore