67 research outputs found

    Electrical properties and defect chemistry of anatase (TiO2)

    Get PDF
    The electrical properties of pure Anatase are investigated by impedance spectroscopy as function of temperature and oxygen partial pressure. The experimental results are fully interpreted by point defect chemistry. A transition from predominant Schottky to Frenkel cation disorder is observed when the temperature increases and/or the oxygen partial pressure decreases. The reduction enthalpies are near those obtained for Rutile in previous studies

    Hot pressing of nanocrystalline TiO2 (anatase) ceramics with controlled microstructure

    Get PDF
    The preparation conditions of nanocrystalline phase-pure TiO2 anatase ceramics by hot pressing are described. Density, surface area, pore size distribution and grain size are determined by various techniques, including gas adsorption, mercury porosimetry, transmission electron microscopy (TEM) and X-ray diffraction (XRD). The evolution of the structural parameters is followed as function of temperature and pressure programme. It is shown that the porosity, grain and pore size of the ceramics can be controlled by a suitable choice of experimental conditions. Ceramics with densities higher than 90% of the theoretical limit with a mean grain size of 30 nm can be obtained at temperatures as low as 490 ◦C under 0.45 GPa for 2 h. The experimental results are discussed in view of the sintering theory

    Hot compaction of nanocrystalline TiO2 (anatase) ceramics. Mechanisms of densification: Grain size and doping effects

    Get PDF
    The hot compaction of nanocrystalline TiO2 anatase powders is investigated using dilatometry. The constant rate of heating (CRH) method is applied to determine effective activation energies of the processes involved during sintering. Grain size and doping effects are studied, using dopant cations of different radius and charge: Zn2+, Al3+, Si4+, Nb5+. The results are interpreted by a mechanism including superplastic deformation and boundary diffusion. The former is predominant for small particles and low temperature, whereas the latter is more important for larger particles and higher temperature. Dopant effects on densification kinetics are discussed in view of defect chemistry

    Texture development in Fe-doped alumina ceramics via templated grain growth and their application to carbon nanotube growth

    Get PDF
    Fe-doped alumina (Fe-Al2O3) materials with a controlled microstructure could be designed for some special uses such as a substrate for carbon nanotube growth. In this study, Fe-doped Al2O3 ceramics with varying degrees of texture were prepared via Templated Grain Growth method and utilized for carbon nanotube synthesis by Catalytic Chemical Vapor Deposition in order to investigate how alpha-Al2O3 crystal orientation affects carbon nanotube growth in polycrystalline ceramics. The degree of texture increased with the Fe content in the presence of liquid phase. Three kinds of carbon filaments (few-wall carbon nanotubes bundles, individual multi-wall nanotubes and carbon nanofibres) were observed over Fe-doped Al2O3 ceramics with varying degrees of texture depending on the surface roughness, crystallographic orientation and the size of the catalyst nanoparticles. While well-textured substrates with a rough surface led to a small amount of randomly oriented carbon nanotube bundles, perpendicularly oriented individual multi-wall nanotubes were obtained over relatively smooth single crystal alpha-Al2O3 platelet surfaces (basal planes) which remained in the matrix without growing

    Preparation-microstructure-property relationships in double-walled carbon nanotubes/alumina composites

    Get PDF
    Double-walled carbon nanotube/alumina composite powders with low carbon contents (2– 3 wt.%) are prepared using three different methods and densified by spark plasma sintering. The mechanical properties and electrical conductivity are investigated and correlated with the microstructure of the dense materials. Samples prepared by in situ synthesis of carbon nanotubes (CNTs) in impregnated submicronic alumina are highly homogeneous and present the higher electrical conductivity (2.2–3.5 Scm-1) but carbon films at grain boundaries induce a poor cohesion of the materials. Composites prepared by mixing using moderate sonication of as-prepared double-walled CNTs and lyophilisation, with little damage to the CNTs, have a fracture strength higher (+30%) and a fracture toughness similar (5.6 vs 5.4 MPa m1/2) to alumina with a similar submicronic grain size. This is correlated with crack-bridging by CNTs on a large scale, despite a lack of homogeneity of the CNT distribution

    Organized growth of carbon nanotubes on Fe-doped alumina ceramic substrates

    Get PDF
    Polycrystalline Fe-doped alumina (Al2O3) ceramics have been produced and used as a substrate for organized carbon nanotubes (CNTs) growth by catalytic chemical vapor deposition (CCVD). In these substrates, Fe3+ cations, which are the catalyst source, are initially substituted to Al3+ in a-Al2O3, instead of being simply deposited as a thin Fe layer on the surface of the substrate. The selective reduction of these substrates resulted in in situ formation of homogeneously distributed Fe nanoparticles forming patterns at nanometerscale steps and kinks. These nanoparticles then catalyzed the growth of high quality CNTs, with some degree of organization thanks to their interaction with the topography of the substrate

    Toughening and hardening in double-walled carbon nanotube/nanostructured magnesia composites

    Get PDF
    Dense double-walled carbon nanotube (DWCNT)/nanostructured MgO composites were prepared using an in situ route obviating any milling step for the synthesis of powders and consolidation by spark-plasma-sintering. An unambiguous increase in both toughness and microhardness is reported. The mechanisms of crack-bridging on an unprecedented scale, crack-deflection and DWCNT pullout have been evidenced. The very long DWCNTs, which appear to be mostly undamaged, are very homogeneously dispersed at the grain boundaries of the matrix, greatly inhibiting the grain growth during sintering. These results arise because the unique microstructure (low content of long DWCNTs, nanometric matrix grains and grain boundary cohesion) provides the appropriate scale of the reinforcement to make the material tough

    The preparation of double-walled carbon nanotube/Cu composites by spark plasma sintering, and their hardness and friction properties

    Get PDF
    Double-walled carbon nanotube (DWCNT)/copper composite powders were prepared by a rapid route involving freeze-drying without oxidative acidic treatment or ball-milling. The DWCNTs are not damaged and are homogeneously dispersed in the matrix. Dense specimens were prepared by spark plasma sintering. The Vickers microhardness is doubled, the wear against a steel or an alumina ball seems very low and the average friction coefficient is decreased by a factor of about 4 compared to pure copper. The best results are obtained for a carbon loading (5 vol%) significantly lower than those reported when using multi-walled carbon nanotubes (10–20 vol%). Maximum Hertzian contact pressure data could indicate that the surface DWCNTs and bundles of them are deformed and broken, possibly resulting in the formation of a graphitized lubricating tribofilm in the contac

    Hardness and friction behavior of bulk CoAl2O4 and Co–Al2O3 composite layers formed during Spark Plasma Sintering of CoAl2O4 powders

    Get PDF
    Materials made up of a Co–Al2O3 composite coating over a CoAl2O4 core are prepared during Spark Plasma Sintering of CoAl2O4 powders. The Co particles are precipitated because of a combination of high temperature and low O2 partial pressure. The precipitation and densification processes hamper each other and thus the way the uniaxial pressure is applied during the sintering cycle is an important parameter to control the microstructure of composite layer and its thickness (about 100 mm) and obtain a dense sample (about 4 g/cm3). The friction coefficient of the Co-Al2O3 composites against an Al2O3 ball is lower than that found for an Al2O3 specimen, which could reveal the lubricating role of submicrometer Co particles. However, increasing the load from 5 to 10 N load causes major changes in the friction contact, which are detrimental. Bulk CoAl2O4 was found to have a Vickers microhardness about 15.5 GPa and an average friction coefficient lower than that of an Al2O3 sample

    Spark plasma sintering as a reactive sintering tool for the preparation of surface-tailored Fe–FeAl2O4–Al2O3 nanocomposites

    Get PDF
    Al1.86Fe0.14O3 powders were partially or totally reduced in H2. The fully reduced Fe–Al2O3 nanocomposite powder was sintered by spark plasma sintering (SPS) without any reaction taking place. For the other powders, the SPS induced the formation of FeAl2O4 and sometimes Fe. The most severe reducing conditions were found at the surface of the materials, producing nanocomposites with a surface layer composition and microstructure different to those of the core. This in situ formed composite layer confers a higher hardness and fracture strength
    corecore