26 research outputs found

    A Personalized Rolling Optimal Charging Schedule for Plug-In Hybrid Electric Vehicle Based on Statistical Energy Demand Analysis and Heuristic Algorithm

    Get PDF
    To alleviate the emission of greenhouse gas and the dependence on fossil fuel, Plug-in Hybrid Electrical Vehicles (PHEVs) have gained an increasing popularity in current decades. Due to the fluctuating electricity prices in the power market, a charging schedule is very influential to driving cost. Although the next-day electricity prices can be obtained in a day-ahead power market, a driving plan is not easily made in advance. Although PHEV owners can input a next-day plan into a charging system, e.g., aggregators, day-ahead, it is a very trivial task to do everyday. Moreover, the driving plan may not be very accurate. To address this problem, in this paper, we analyze energy demands according to a PHEV owner’s historical driving records and build a personalized statistic driving model. Based on the model and the electricity spot prices, a rolling optimization strategy is proposed to help make a charging decision in the current time slot. On one hand, by employing a heuristic algorithm, the schedule is made according to the situations in the following time slots. On the other hand, however, after the current time slot, the schedule will be remade according to the next tens of time slots. Hence, the schedule is made by a dynamic rolling optimization, but it only decides the charging decision in the current time slot. In this way, the fluctuation of electricity prices and driving routine are both involved in the scheduling. Moreover, it is not necessary for PHEV owners to input a day-ahead driving plan. By the optimization simulation, the results demonstrate that the proposed method is feasible to help owners save charging costs and also meet requirements for driving

    Surface Structure and Electronic Properties of Lu3Al5O12

    No full text
    Lu3Al5O12 (LuAG) is a famous scintillator that has the advantages of high efficiency, high light yield, and fast decay after being doped with active ions. F centers (oxygen vacancies with two electrons) and antisite defects are the most important defects and can greatly affect the scintillation performance in the bulk materials. However, the surface defects that strongly affect the spectrum of a single crystal (SC) and single crystal film (SCF) and the effect on the electronic properties have not been investigated. In this context, we investigate the surface structural and electronic properties of Lu3Al5O12 using first-principles calculations. The Lu atoms are six-fold and seven-fold coordinated with the O atoms on the S1 and S2 surfaces. The surface oxygen vacancies and antisites have considerably lower formation energies than for the bulk. The oxygen vacancies in the bulk introduce the occupied states in the band gap. The surface electronic states are mainly located on the oxygen atoms and can be eliminated via oxygen vacancies

    Composite timber panel optimization for a new-type cold-formed steel shear wall

    No full text
    Background and Methods: This paper illustrates a research on the behavior of the composite timber panels used in a new-type cold-formed steel shear wall, when subjected to monotonic and reversed cyclic in-plane loading. The framing members of this new-type cold-formed steel shear wall are made of cold-formed steels. The inner timber frameworks, sheathed with veneer plywood, form the composite timber panels. Objective: In order to improve the lateral performance of the new-type cold-formed steel shear wall, two different optimized composite timber panels were proposed and tested, namely, increasing the thickness of the sheathings and the addition of steel X-bracings. The main objective of the study is to determine the quantification of the improvement in lateral performance of these two optimized composite timber panels. Results and Conclusion: Observed failure modes, structural performance parameters and the data of the strain gauges were given for each specimen, which indicates two optimized panels both have better lateral performance. But larger deformation and damage of the sheathings happened on the panels with steel X-bracings, so the panels with thick sheathings are more suitable and practical for normal use

    Characterization of Fractional Polysaccharides from Gleditsia sinensis and Gleditsia microphylla Gums

    No full text
    The seeds of Gleditsia sinensis and Gleditsia microphylla, widespread in China, are an important source of galactomannans. G. sinensis gum (GSG) and G. microphylla gum (GMG) were purified and precipitated using different concentrations of ethanol and isopropanol. The GSG and GMG, precipitated in different stages, presented different characteristics, including polymer recovery, mannose/galactose ratio, chemical composition, molecular weight, and morphological appearance. The galactomannan recovery of GSG and GMG in 33.3% ethanol was 81.7% and 82.5%, respectively, while that in 28.8% isopropanol was 81.3% and 82.9%, respectively. To achieve similar precipitation efficiency, the amount of isopropanol should be lower than that of ethanol because of the lower dielectric constant of isopropanol (20 vs. 25 for ethanol). The precipitation behavior of galactomannans in polar organic solvents was dependent on the molecular structures and properties of the solvent. A higher mannose/galactose ratio and a higher molecular weight was obtained in a lower concentration of alcohols

    The Clinical Value of Oxymatrine in Preventing Lamivudine Induced YMDD Mutation: A Meta-Analysis

    No full text
    Oxymatrine (OMTR) is widely used for the treatment of chronic hepatitis B (CHB) in China. Several reports revealed that combination of OMTR and lamivudine reduced the incidence of tyrosine- (Y-) methionine- (M-) aspartic acid- (D-) aspartic acid (D) (YMDD) mutations in CHB patients. The aim of this study was to evaluate the clinical value of oxymatrine in preventing lamivudine induced YMDD mutation using meta-analysis of data from published randomized controlled trials (RCTs) and to provide some useful information for clinical treatment and future research of YMDD mutation. The Cochrane Central Register of Controlled Trials, Medline, Science Citation Index, EMBASE, China National Knowledge Infrastructure, Wanfang Database, and China Biomedical Database were searched to identify RCTs that evaluated the incidence of YMDD-motif mutation to lamivudine therapy and lamivudine plus OMTR therapies in CHB patients. Data analysis was carried out with the use of RevMan 5.3.2. The literature search yielded 324 studies, and 16 RCTs matched the selection criteria. Overall, the incidence of YMDD mutation was significantly lower in patients treated with lamivudine plus OMTR than in patients treated with lamivudine alone (11.14% versus 28.18%; RR: 0.41; 95% CI: 0.33–0.52; p<0.05). The exact outcome needs to perform rigorously designed, multicenter, and large randomized controlled trials

    Enhancing Photochemical Internalization of DOX through a Porphyrin-based Amphiphilic Block Copolymer

    No full text
    Drug resistance is a primary obstacle that seriously reduces the therapy efficiency of most chemotherapeutic agents. To address this issue, the photochemical internalization (PCI) was employed to help the anticancer drug escape from lysosome and improve their translocation to the nucleus. A pH-sensitive porphyrin-based amphiphilic block copolymer (PEG<sub>113</sub>-<i>b</i>-PCL<sub>54</sub>-<i>a</i>-porphyrin) was synthesized, which was acted not only as a carrier for the delivery of DOX but also as a photosensitizer for PCI. PEG<sub>113</sub>-<i>b</i>-PCL<sub>54</sub>-<i>a</i>-porphyrin as a drug carrier exhibited a higher drug loading capacity, entrapment efficiency, and DOX release content. The PCI effect of PEG<sub>113</sub>-<i>b</i>-PCL<sub>54</sub>-<i>a</i>-porphyrin was studied by confocal laser scanning microscopy, and the results showed that most of DOX could be translocated into the nucleus for DOX-loaded PEG<sub>113</sub>-<i>b</i>-PCL<sub>54</sub>-<i>a</i>-porphyrin micelles. Moreover, the IC<sub>50</sub> of pH-sensitive DOX-loaded PEG<sub>113</sub>-<i>b</i>-PCL<sub>54</sub>-<i>a</i>-porphyrin micelles was much lower than that of its counterpart without pH-responsiveness, DOX-loaded PEG<sub>113</sub>-<i>b</i>-PCL<sub>54</sub>-porphyrin micelles. Therefore, this drug delivery system based on pH-sensitive porphyrin-containing block copolymer would act as a potential vehicle for overcoming drug resistance in chemotherapy
    corecore