126 research outputs found

    Polar domain structural evolution under electric field and temperature in the (Bi0.5 Na0.5)TiO3 -0.06BaTiO3 piezoceramics

    Get PDF
    Lead‐free bismuth sodium titanate and related compounds are of great interest as promising candidates for piezoelectric applications. However, the full understanding of this family of materials is still a challenge partly because of their structural complexity and different behaviors with or without the application of an external electric field. Here, piezoresponse force microscopy is used to gain insight into the mesoscopic‐scale domain structure of the morphotropic phase boundary (MPB) composition of (1‐x)Bi0.5Na0.5TiO3‐xBaTiO3 solid solution at x = 0.06 (abbreviated as BNT‐6BT). The evolution of the domains with the changes of the electric field and temperature has been thoroughly examined in conjunction with the crystal structure analysis and dielectric studies. It is found that ferroelectric domains with size of hundreds of nanometers are embedded in a relaxor state without visible domains on a mesoscopic scale, which are considered to contribute to the tetragonal and cubic phases in the material, respectively. Temperature‐independent domain configuration is observed in the unpoled sample from room temperature to 200°C. While, temperature‐dependent domain configuration is observed in the poled sample. The homogenously poled state breaks into the mixed domain configuration containing polydomain structure and invisible state around the so‐called depoling temperature. The structural changes on different length scales are also discussed. This work provides an in‐depth understanding of the structural and domain changes under an electric field and the temperature‐dependent domain evolution in both unpoled and poled states in the BNT‐BT solid solution of the MPB composition

    Impact of quenched random fields on the ferroelectric-to-relaxor crossover in the solid solution (1−x)BaTiO3−xDyFeO3

    Get PDF
    Lead-based perovskite relaxor ferroelectrics are widely used as materials for numerous applications due to their extraordinary dielectric, piezoelectric, and electrostrictive properties. While the mechanisms of relaxor behavior are disputable, the importance of quenched (static) random electric fields created at nanoscale by the disordered heterovalent cations has been well recognized. Meanwhile, an increasing amount of scientific and technological efforts has been concentrated on lead-free perovskites, in particular, solid solutions of classical ferroelectric BaTiO 3 (BT), which better meet ecological requirements. Among BT-based solutions the homovalent systems are elaborately studied where strong random electric fields are absent, while the solubility limit of heterovalent solutions is typically too low to fully reveal the peculiarities of relaxor behavior. In this paper, we prepare a perovskite solid solution system (1 − x )Ba 2 + Ti 4 + O 3 − x Dy 3 + Fe 3 + O 3 (0 x 0 . 3) and study it as a model heterovalent lead-free system. We determine crystal structure, ferroelectric, and dielectric properties of ceramics in a wide range of temperatures and concentrations, construct a phase diagram, and find and analyze the concentration-induced crossover from normal ferroelectric to relaxor behavior. We demonstrate that quenched random electric fields of moderate strength promote the ferroelectric-to-relaxor crossover, but do not change qualitatively the peculiarities of relaxor behavior, while strong enough fields destroy the relaxor state, so that the material becomes an ordinary linear dielectric. The experimental results are compared with the predictions of known theories of relaxor ferroelectricity

    Origin of the Oligocene Tuolangla porphyry-skarn Cu-W-Mo deposit in Lhasa terrane, southern Tibet

    Get PDF
    Although some porphyry-skarn deposits occur in post-collisional extensional settings, the post-collisional deposits remain poorly understood. Here the authors describe the igneous geology, and mineralization history of Tuolangla, a newly-discovered porphyry-skarn Cu-W-Mo deposit in southern Tibet that belongs to the post-collisional class. The deposit is associated with Lower Cretaceous Bima Formation. It was intruded by granodiorite porphyry intrusions at about 23.1 Ma. Field investigation indicated that mineralization is spatially and temporally associated with granodiorite porphyry. Molybdenite yielded a Re-Os weighted mean age of 23.5 +/- 0.3 Ma and is considered to represent the age of skarn mineralization at the deposit. The delta S-34 values of sulfides, concentrated in a range between 0.6 parts per thousand to 3.4 parts per thousand, show that the sulfur has a homogeneous source with characteristics of magmatic sulfur. The Pb isotopic compositions of sulfides indicate that ore-forming metal materials were derived from the mantle and ancient crust. The granodiorite porphyry displays high SiO2 (68.78%-69.75%) and K2O (3.40%-3.56%) contents, and relatively lower Cr (2.4x10(-6) -4.09x10(-6) ), Ni (2.79x10(-6)-3.58x10(-6)) contents, and positive epsilon(Hf)(t) values (7.7-12.9) indicating that the mineralization porphyry was derived from the partial melting of juvenile lower crust. The Tuolangla deposit is located in the central part of Zedang terrane. This terrane was once considered an ancient terrane. This terrane is in tectonic contact with Cretaceous ophiolitic rocks to its south and Mesozoic continental margin arc volcanics and intrusions of the Gangdese batholith of the Lhasa terrane to its north. Thus, the authors proposed that the Oligocene porphyry skarn Cu-W-Mo mineralization is probably associated with the Zedang terrane. This finding may clarify why the Oligocene (about 23 Ma) deposits are found only in the Zedang area and why mineralization types of the Oligocene mineralization are considerably different from those of the Miocene (17-14 Ma) mineralization. (C) 2020 China Geology Editorial Office

    Source and evolution of the ore-forming fluid of the Cuonadong Sn-W-Be polymetallic deposit (southern Tibet, China): constraints from scheelite trace element and Sr isotope geochemistry

    Get PDF
    The Cuonadong Sn-W-Be polymetallic deposit is the first rare-metal deposit with an extraordinary metallogenic potential that has been discovered in the Tethyan Himalayan metallogenic belt. The deposit shows a wide range of different mineralization types, including greisen-, pegmatite-, skarn-, and hydrothermal vein-type mineralization. Of these mineralization types, the skarn-type has the largest inferred resources. In order to constrain the source and evolution of the ore-forming fluid, we conducted a detailed study of the skarn-hosted scheelite, including cathodoluminescence imaging, in-situ trace elemental analysis, and bulk Sr isotope analysis. In addition, bulk Sr isotope analysis of fluorite, phlogopite 40Ar-39Ar dating, and marble whole-rock geochemical analysis were also conducted. Phlogopite 40Ar-39Ar dating indicates that the skarn was formed at ca. 15 Ma, which is close to the formation age of the Cuonadong muscovite granite reported in previous studies. Cathodoluminescence images indicate that skarn-hosted scheelite can be subdivided into an older type 1 scheelite and a younger type 2 scheelite. Type 1 scheelite is characterized by a negative Eu anomaly, whereas type 2 scheelite shows a positive Eu anomaly. Considering the close temporal and spatial relationship between the Cuonadong Miocene leucogranite and the ore-bearing skarn, and their similar lanthanide tetrad effect as observed in the REE patterns, we propose that the negative Eu anomaly was inherited from the Cuonadong Miocene leucogranite, while the positive Eu anomaly resulted from the addition of Eu2+ to the ore-forming fluid during greisenization. Sr isotope data show that the fluorite (87Sr/86Sr)i value of 0.728885 is within the range of the Cuonadong Miocene leucogranite (87Sr/86Sr)i values, while scheelite (87Sr/86Sr)i values (0.709717-0.713480) are similar to those of the Cuonadong marble (0.709525-0.712146). Since scheelite is intergrown with fluorite, we propose that the hydrothermal fluid that exsolved from the Cuonadong Miocene leucogranite is responsible for formation of both fluorite and scheelite. Water-rock interaction between this magma-derived fluid and the marble is responsible for the loss of the scheelite magmatic Sr isotopic signature.publishedVersio

    Promising plasmid DNA vector based on APTES-modified silica nanoparticles

    Get PDF
    Nanoparticles have an enormous potential for development in biomedical applications, such as gene or drug delivery. We developed and characterized aminopropyltriethoxysilane-functionalized silicon dioxide nanoparticles (APTES-SiNPs) for gene therapy. Lipofectamine® 2000, a commonly used agent, served as a contrast. We showed that APTES-SiNPs had a gene transfection efficiency almost equal to that of Lipofectamine 2000, but with lower cytotoxicity. Thus, these novel APTES-SiNPs can achieve highly efficient transfection of plasmid DNA, and to some extent reduce cytotoxicity, which might overcome the critical drawbacks in vivo of conventional carriers, such as viral vectors, organic polymers, and liposomes, and seem to be a promising nonviral gene therapy vector

    The CircRNA-ACAP2/Hsa-miR-21-5p/ Tiam1 Regulatory Feedback Circuit Affects the Proliferation, Migration, and Invasion of Colon Cancer SW480 Cells

    Get PDF
    Background/Aims: Circular RNAs (circRNAs), a type of RNA that is widely expressed in human cells, have essential roles in the development and progression of cancer. CircRNAs contain microRNA (miRNA) binding sites and can function as miRNA sponges to regulate gene expression by removing the inhibitory effect of an miRNA on its target gene. Methods: We used the bioinformatics software TargetScan and miRanda to predict circRNA-miRNA and miRNAi-Mrna interactions. Rate of inhibiting of proliferation was measured using a WST-8 cell proliferation assay. Clone formation ability was assessed with a clone formation inhibition test. Cell invasion and migration capacity was evaluated by performing a Transwell assay. Relative gene expression was assessed using quantitative real-time polymerase chain reaction and relative protein expression levels were determined with western blotting. circRNA and miRNA interaction was confirmed by dual-luciferase reporter and RNA-pull down assays. Results: In the present study, the miRNA hsa-miR-21-5p was a target of circRNA-ACAP2, and T lymphoma invasion and metastasis protein 1 (Tiam1) was identified as a target gene of hsa-miR-21-5p. CircRNA-ACAP2 and Tiam1 were shown to be highly expressed in colon cancer tissue and colon cancer SW480 cells, but miR-21-5p was expressed at a low level. SW480 cell proliferation was suppressed when the expression of circRNA-ACAP2 and Tiam1 was decreased and the expression of miR-21-5p was increased in vivo and in vitro. SW480 cell migration and invasion were also inhibited under the same circumstance. The circRNA-ACAP2 interaction regulated the expression of miR-21-5p, and miR-21-5p regulated the expression of Tiam1. Down-regulation of circRNA-ACAP2 promoted miR-21-5p expression, which further suppressed the transcription and translation of Tiam1. Conclusion: The present study shows that the circRNA-ACAP2/hsa-miR-21-5p/Tiam1 regulatory feedback circuit could affect the proliferation, migration, and invasion of colon cancer SW480 cells. This was probably due to the fact that circRNA-ACAP2 could act as a miRNA sponge to regulate Tiam1 expression by removing the inhibitory effect of miR-21-5p on Tiam1 expression. The results from this study have revealed new insights into the pathogenicity of colon cancer and may provide novel therapeutic targets for the treatment of colon cancer
    corecore