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Abstract 

Lead-free bismuth sodium titanate and related compounds are of great interest as promising 

candidates for piezoelectric applications. However, the full understanding of this family of materials 

is still a challenge partly because of their structural complexity and different behaviors with or 

without the application of an external electric field. Here, piezoresponse force microscopy is used to 

gain insight into the mesoscopic-scale domain structure of the morphotropic phase boundary (MPB) 

composition of (1-x)Bi0.5Na0.5TiO3-xBaTiO3 solid solution at x = 0.06 (abbreviated as BNT-6BT). 

The evolution of the domains with the changes of the electric field and temperature has been 

thoroughly examined in conjunction with the crystal structure analysis and dielectric studies. It is 
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found that ferroelectric domains with size of hundreds of nanometers are embedded in a relaxor state 

without visible domains on a mesoscopic scale, which are considered to contribute to the tetragonal 

and cubic phases in the material, respectively. Temperature-independent domain configuration is 

observed in the unpoled sample from room temperature to 200 oC. While, temperature-dependent 

domain configuration is observed in the poled sample. The homogenously poled state breaks into the 

mixed domain configuration containing polydomain structure and invisible state around the so-called 

depoling temperature. The structural changes on different length scales are also discussed. This work 

provides an in-depth understanding of the structural and domain changes under an electric field and 

the temperature-dependent domain evolution in both unpoled and poled states in the BNT-BT solid 

solution of the MPB composition. 

 

1. Introduction 

As one of the promising lead-free candidates for replacing the lead-containing ferroelectric 

compounds, the (1-x)Bi0.5Na0.5TiO3-xBaTiO3 (abbreviated as BNT-100xBT) solid solution has been 

extensively studied for potential applications in high-frequency ultrasonic transducers and 

piezoelectric actuators, due to its excellent dielectric and piezoelectric properties [1-3]. Although the 

compositions of the morphotropic phase boundary (MPB) in this system were reported to range from 

x = 0.05 to x = 0.11 based on the structural analysis by X-ray diffraction and Raman spectroscopy 

[4-7], the enhanced dielectric, ferroelectric and piezoelectric properties appear only in the 

composition range of x = 0.06 - 0.07 [6, 8], which is commonly believed to be the true MPB with the 

coexistence of a rhombohedral and a tetragonal ferroelectric phase [9]. The MPB separates a 

rhombohedral or monoclinic symmetry (R3c or Cc) in the BNT-rich composition and a tetragonal 
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symmetry (P4mm) in the BT-rich composition [1]. However, compared with other ferroelectric 

perovskites, BNT-BT exhibits a very small structural distortion from its parent cubic phase, which 

makes it difficult to directly distinguish the different phases using conventional diffraction 

techniques [10-12]. Therefore, the average and local structures of this solid solution, especially near 

the MPB, are still under extensive debate. Recently, several studies speculated that the MPB of 

BNT-BT has a cubic-like structure, and the application of an electric field induces a phase transition 

from a cubic-like to the tetragonal phase or a mixture of different structures, resulting in enhanced 

piezoelectric properties [13, 14]. Groszewicz et al. [15] reported the coexistence of a cubic phase and 

a polar state in BNT-6BT on the atomistic scale by means of quadrupolar 23Na nuclear magnetic 

resonance (NMR). The cubic phase existing in the unpoled sample vanishes under the application of 

a high electric field, and recovers upon thermal annealing and zero-electric-field cooling process.  

Besides the uncertainty on its average and local crystal structures, studies on the mesoscopic-scale 

domain configuration and the electric field-induced domain structural changes are also lacking. The 

dielectric and piezoelectric properties in ferroelectric materials are generally dependent on both 

intrinsic and extrinsic mechanisms. Intrinsic contributions are the collective deformation originating 

from individual unit cells' distortions, regardless of the domain structure. Extrinsic contributions 

mainly arise from the domain wall motion. Therefore, the domain wall mobility and density are 

responsible for the extrinsic dielectric and piezoelectric properties of ferroelectric materials [16-18].  

In this work, the domain evolutions under electric field and temperature change in the MPB 

composition (BNT-6BT) are systematically investigated in relation to the dielectric response and 

crystal structure. It should be noted that the MPB compositions reported in the literatures vary due to 

the different ceramics preparation processes and testing methods. Therefore, compositions with x 
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from 0 to 0.08 are prepared in this work and the MPB composition is determined to be at x = 0.06 

(BNT-6BT) with the highest permittivity and piezoelectric coefficient. The domain-related study is 

performed by the piezoresponse force microscopy (PFM) [19, 20], in which a high spatial resolution 

is achieved by using a sharp conductive tip, offering a non-destructive way to study both the 

out-of-plane and in-plane domain structures in polycrystalline materials at various temperatures. We 

aim to investigate the behavior of BNT-BT under electric field from a multi-scale approach, and to 

provide better understanding in the mechanism of the electrical properties in BNT-BT solid solutions 

at the MPB in relation to its complex morphotropic structure. 

 

2. Experimental Procedure 

Ceramic samples were prepared using solid-state synthesis from reagent-grade Bi2O3, TiO2, Na2CO3 

and BaCO3 according to the stoichiometric composition of BNT-6BT. The reactant powders were 

firstly mixed and calcined at 900 oC for 2 hours. After calcination, the ground and ball-milled 

powder was densified into pellets at 120 MPa, and then sintered at 1150 oC for 2 hours. The average 

density of 5.817 g/cm3 of the sintered pellets was determined by the Archimedes drainage method. 

The sintered pellets were polished and coated with silver paste for electrical measurements. The 

dielectric response was measured using the broadband dielectric spectrometer (Novocontrol GmbH, 

Germany). For X-ray diffraction (XRD) measurements, the sintered ceramics were smashed and 

milled into fine powder, which was then annealed to remove the mechanical stress. High-resolution 

X-ray powder diffraction experiments were performed on a P'Analytical X'pert Pro diffractometer 

with a curved Johansson monochromator, providing focused Cu Kα1 radiation. For the 

piezoresponse force microscopy (PFM) measurements, the sintered pellets were mirror-polished 
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using aluminium oxide paper with coated abrasive particle sizes of 9 µm, 5µm, 3µm, and 1µm. The 

domain structure was investigated using the PFM mode of a scanning probe microscopy (Dimension 

Icon, Bruker, USA) equipped with a heating stage. The measurements were performed using a 

conductive tip (resonant frequency at 40 kHz, DDESP, Bruker). An ac voltage (15 ~ 45 kHz, 6 V) 

was applied on the sample stage to stimulate the sample expansion and shrink and the conductive tip 

was used as the top electrode.  

 

3. Results 

Fig. 1(a) shows the dielectric response (real and imaginary part of the permittivity) in an unpoled 

sample. The relaxor behavior is observed in the unpoled sample, as evidenced by the temperature 

and frequency dependences of permittivity, which is in agreement with previous reports [11, 21]. 

There are two anomalies observed in the temperature-dependent dielectric response (the real part, ε′). 

One of them is a broad and frequency- and temperature-dependent dielectric shoulder around Ts [22] 

between 90 oC and 150 oC, and the other is a broad permittivity maximum at around 300 oC, which is 

sometimes determined as Tmax [2]. However, in our study, we find that the permittivity at higher 

temperature is not frequency dependent [7, 23, 24]. On the other hand, the lower-temperature broad 

anomaly (Ts) is more likely to be related to the relaxor behavior of this system [2, 7, 11, 22, 25, 26], 

which will be discussed in detail later. The frequency dispersion of the real part (ε′) appears from 

below room temperature to 150 oC and vanishes above that point. The frequency-dependent 

permittivity values measured at various temperatures shown in Fig. 1(b) also confirm this tendency. 

The temperature-dependent imaginary part (ε′′) in Fig. 1(a) exhibits considerable dielectric relaxation 

around Ts. The temperature of the dielectric loss (imaginary part) maximum peak increases with 
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increasing frequency, confirming that the ceramics exhibits relaxor ferroelectricity.  

The dielectric response of the poled sample is strikingly different from that in the unpoled sample, as 

shown in Fig. 1(c). Before poling, the frequency dispersion appears at room temperature; after poling, 

the frequency dispersion in the ε′ and ε′′ is significantly attenuated at room temperature, meaning that 

the electric field has induced the transition from the relaxor state to a macroscopic ferroelectric state, 

in agreement with the high-energy X-ray diffraction results that an electric field induced a structure 

transition from the cubic to a lower symmetry phase [13, 27]. An abnormal of ε′′ at high frequency is 

due to the big loss after poling. Upon heating, the poled sample shows a sharp increase in dielectric 

constant around Td ≈ 76 oC, above which the frequency dispersion recurs, as in the unpoled sample, 

indicating a transformation from the induced ferroelectric state back to the relaxor state as in the case 

of the conventional relaxor PMN [25]. It is also observed in Fig. 1(d) that a resonance peak (which is 

a demonstration of the poled state in piezoelectric ceramic) appears at high frequency below 74 oC 

and vanishes above 78 oC. Therefore, Td = 76 oC is determined as the depoling temperature (Td) in 

this case. This result is in good agreement with the reported depoling temperature (73-75 oC) 

measured from the thermally induced depolarization current [28]. In order to quantitatively analyze 

the frequency dispersion, the slopes of ε′ versus log-frequency whose absolute value is positively 

corrected with the dispersion degree at various temperatures were calculated in both unpoled (Su) and 

poled (Sp) samples and the results are shown in Fig. 1(e), together with the ratio of Su/Sp. The degree 

of frequency dispersion reaches its maximum at Td in the unpoled BNT-6BT ceramic as the absolute 

value of the slope peaks. The absolute value of the slope in the poled BNT-6BT is approximately 

close to zero at room temperature with a rapid change around Td, and then follows the track of the 

unpoled sample above Td with further increase of temperature. When the temperature increases above 
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Ts, the frequency dispersion vanishes completely in both unpoled and poled ceramics with a flat 

slope approaching zero. 

 

 

Fig. 1  The real part of permittivity (ε′) and imaginary part of permittivity (ε′′) of the BNT-6BT 

ceramics measured at various frequencies and temperatures. (a) ε′ and ε′′ plotted versus temperature 

at various frequencies for unpoled sample. (b) ε′ plotted versus log-frequency at various temperatures 
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for unpoled sample. (c) ε′ and ε′′ plotted versus temperature at various frequencies for poled sample. 

(d) ε′ plotted versus log-frequency at various temperatures for poled sample. (e) The slope of ε′ 

versus log-frequency as a function of temperature for both unpoled sample (Su) and poled sample 

(Sp), as well as the ratio of Su/Sp. 

 

The crystal structure of the BNT-6BT powder was investigated by high-resolution X-ray powder 

diffraction experiments. The structural models were obtained by Rietveld refinement using the 

software TOPAS-Academic (Alan Coelho, http://www.topas-academic.net/). The diffraction pattern 

was firstly refined with a cubic structure of models due to the fact that the frequency dependences of 

the dielectric response suggest a relaxor behavior, which mostly exists in a long-range cubic phase 

with a coexistence of rhombohedral and tetragonal domains at the local scale [25]. However, because 

of the asymmetrical shape of many Bragg peaks in the diffraction pattern, a single cubic (Pm-3m) 

structural model cannot fit the data well. Considering that the shoulders of the {200} Bragg 

reflection underneath the sharp main peak in the middle may be arises from the split of the tetragonal 

(200)/(020) and (002) peaks, a tetragonal phase (P4mm) component is taken into account to refine 

the XRD results. In addition, the rhombohedral phase (R3c) was reported to exist in the MPB 

composition [29-31]. We note that in some cases, the asymmetrical line broadening in the powder 

diffraction patterns is caused by anisotropic micro-strains [32] and can be refined in the Rietveld 

refinement. However, incorporating the anisotropic micro-strain line broadening parameters in our 

refinements did not improve the result. Therefore, two models of mixed phases: rhombohedral + 

tetragonal (T+R), and tetragonal + cubic (T+C), and the single-phase cubic (C) model were tested. 

Fig. 2(a) shows the XRD patterns in a limited 2θ range of the BNT-6BT powder measured at 25 oC 
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and the refined patterns. There are several regions in the diffraction pattern showing remarkable 

difference between the experimental data and refinement curve using C and T+R models. For 

example, the refinement curve almost coincide with the experimental data of the {200} Bragg 

reflection using the T+C model, while, neither the shoulders nor the main peak can be fitted well 

using the C and T+R models. Peak splits can also be observed in the {211} Bragg reflection. C and 

T+R models fail to fit the lower peak on the left side. The refined parameters using the three kinds of 

modes are shown in Table 1. The T+C model gives the best fit for the whole pattern on the peak 

position, peak width, and peak height, as shown in Fig. 2(b). This refinement result suggests the 

coexistence of a tetragonal and a cubic phases in the BNT-6BT ceramics. It is believed that the cubic 

phase is non-centrosymmetric at the local scale, possibly with the coexistence of R and/or T 

distortions. 

To study the phase transformation around Td, the structural evolution as a function of temperature 

measured upon heating are analyzed. No obvious phase transition is observed from room temperature 

to 250 oC, as shown in the 2θ contour plot around the {200} Bragg reflection (Fig. 2(b)). At room 

temperature, the shoulders are attributed to the (002) and (200)/(020) peaks of the tetragonal phase, 

and the middle (200) peak belongs to the cubic phase. Upon heating, the {200} peaks shift to lower 

angles, while the shape is still maintained with the shoulders subsisting up to 250 oC, the highest 

measurement temperature. As expected, the XRD results measured at 250 oC are also refined well 

with the model of T+C phases. Raman spectroscopic measurement also confirmed that the structure 

of the MPB composition above 100 oC is identical to that below 100 oC [7]. Similarly, the dielectric 

anomaly around Ts was also observed in pure BNT below the temperature where the permittivity 

maximum appears, and no phase transition was evidenced going through the Ts [33-35]. The 
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intensity of the {200} Bragg reflection peak increases at higher temperature. This is an indication of 

the decreasing full width at half maximum (FWHM), which may be related to the decrease in 

disorder of the cubic component. The combined X-ray powder diffraction and dielectric permittivity 

results suggest that the Ts observed in our BNT-6BT ceramic most likely corresponds to the relaxor 

behavior arising from a slowing down of the dynamics of polar nanoregions in the cubic phase, 

rather than a long-range ferroelectric-paraelectric phase transition in the tetragonal component. This 

tetragonal component must exist in the local scale and it persists (and possibly remains unchanged) 

up to at least 250 oC. 
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Fig. 2  Structural analysis of the BNT-6BT ceramic powder by Rietveld refinement. (a) The 

experimental data, refinement and error plots of {200} and {211} Bragg profiles after Rietveld 

refinement with the structural models of T+C, C and T+R. The dark red, blue and dark yellow 

vertical bars correspond to the peak positions of T, C and R phases, respectively. (b) XRD patterns of 
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the ceramic powder measured at 25 oC and the refinement plot with the model of T+C. The blue and 

red vertical bars correspond to the peak positions of T and C phases, respectively. (c) Mapping of 

{200} Bragg profile as a function of temperature, accompanied with the refinements of {200} Bragg 

profile measured at 25 oC and 250 oC with the model of T+C on both sides of the 2D picture. 

 

Table 1  Refined structural parameters and atomic positions of the BNT-6BT ceramic powder using 

models of T+C, C and T+R. 

T+C model T phase C phase  

a, b, c (Å) 3.8874(2) 3.8874(2) 3.9386(5) 3.9003(1) 3.9003(1) 3.9003(1) 

Na/Bi/Ba x, y, z 0 0 0.01(3) 0 0 0 

Ti x, y, z 0.5 0.5 0.58(3) 0.5 0.5 0.5 

O1 x, y, z 0.5 0.5 0 0.5 0.5 0 

O2 x, y, z 0 0.5 0.5    

R bragg Phase fraction 2.76 31% 2.03 68% 

C model 

a, b, c (Å) 3.9001(1) 3.9001(1) 3.9001(1)  

Na/Bi/Ba x, y, z 0 0 0  

Ti  0.5 0.5 0.5  

O1  0.5 0.5 0  

R bragg Phase fraction 2.47 100%  

T+R model T phase R phase 

a, b, c (Å) 3.899(2) 3.899(2) 3.900(1) 5.532(2) 5.532(2) 13.54(2) 

Na/Bi/Ba x, y, z 0 0 0.01(4) 0 0 0.27(2) 

Ti x, y, z 0.5 0.5 0.49(6) 0 0 -0.01(2) 

O1 x, y, z 0.5 0.5 0 0.09(2) 0.19(4) 0.0833 

O2 x, y, z 0 0.5 0.5  

R bragg Phase fraction 2.44 84% 2.33 16% 

 

 

To further investigate the structural evolution under an electric field, we have studied the mesoscopic 

domain structures in both unpoled and poled BNT-6BT ceramics using PFM. Poling was performed 
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at room temperature under 4.5 kV/cm for 15 minutes, and a d33 value of 144 pC/N was obtained in 

the poled sample. Fig. 3(a) depicts the domain structure of the unpoled BNT-6BT sample. Two kinds 

of PFM responses are observed in both the out-of-plane and in-plane images. One is the areas shown 

by clear domain patterns with a strong amplitude response (encircled by dark lines), and the other is 

the surrounding areas containing domains with a weak amplitude response and a blurry phase, i.e., 

nanodomains “invisible” to PFM. This is similar to the nanodomains observed by TEM on 

microscopic scale in the MPB composition [31]. The application of the electric field increases the 

domain size in the whole measured region as shown in the dramatically different out-of-plane and 

in-plane images observed in poled sample in Fig. 3(b). The out-of-plane phase component shows that 

the whole measured area is switched almost completely with the polarization pointing in the upward 

direction. The corresponding amplitude component exhibits strong response in the whole poled area. 

Because the polycrystalline ceramics are randomly oriented, the in-plane phase component exhibits a 

random distribution of polarization, including regions with in-plane component pointing towards left 

(labeled as A), regions with in-plane component pointing towards right (labeled as B) and also 

regions with blurry phase contrast (labeled as C). Correspondingly, the in-plane amplitude 

component exhibits strong response in region A and B, and no response in region C. Fig. 3(c) 

describes the schematic of the polarization distribution of the poled BNT-6BT ceramic. Suppose that 

the out-of-plane phase exhibits a response perpendicular to the surface (z axis) and the in-plane phase 

shows a response parallel to the surface (x axis). Both the out-of-plane and in-plane phases constitute 

the polarization orientation state in the x-z projection, with a left oblique polarization in region A, a 

right oblique polarization in region B, and an upwards polarization in region C, depending on the 

orientation of the grains. Fig. 3(d) shows the schematic of the domain structure and polarization 
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status before and after poling when view on perpendicular to the x-z plane. Before poling, the 

ceramic exhibits randomly orientated domains and 180o domain walls in a single grain. After poling, 

the domains are switched towards the orientations formed by the electric field and 180o domain walls 

inside of single grain are diminished.  

 

 

Fig. 3  PFM images of the unpoled (a) and poled (b) BNT-6BT ceramics, including the out-of-plane 

phase and amplitude images, in-plane phase and amplitude images. (c) Schematic of the polarization 

orientation in a poled BNT-6BT ceramic marked in (b). (d) Schematic of the domain structure and 

polarization orientation in polycrystalline ceramics before and after poling.  

 

In order to further understand the evolution of the polar state, the temperature-dependent domain 
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structures in both unpoled and poled samples are investigated. The stability of the polar domain and 

polarization responses as a function of temperature in the unpoled BNT-6BT sample are 

demonstrated in Fig. 4. Our analysis is focused on one of the areas that already show clear domain 

patterns before poling. Distinct phase contrast and strong amplitude response are present in the PFM 

images from 50 oC to 120 oC. With temperature increasing to 200 oC, the amplitude response drops 

and the phase contrast becomes blurred. Upon cooling down to room temperature, both the intense 

amplitude response and the distinct phase contrast recover. No variation in the domain patterns is 

observed from room temperature up to 200 oC, i.e., going through Td and Ts. Similarly, it was 

reported that the domain structure does not change going through the Ts in BNT single crystals [36, 

37]. Fig. 4(i) provides the relative changes of piezoresponse signal of the scanned area as a function 

of temperature for the BNT-6BT sample measured upon heating. The average PFM amplitude 

signals from room temperature to 250 oC were fitted using a linear function. With increasing 

temperature, the polarization response gradually weakenes, possibly due to the thermally weakened 

ferroelectricity. More interestingly, the piezoelectric response does not vanish completely, as seen 

from both the PFM image and the signal strength plot at or above 200 oC. If the polarization observed 

in this domain corresponds to the tetragonal component in X-ray diffraction, the temperature 

evolution of this phase fits well the XRD result that a complete paraelectric phase does not show up 

in the experimental temperature range. This temperature-dependent mesoscopic scale polarization 

response is also in agreement with the macroscopic scale polarization response based on the 

polarization hysteresis loops reported by Jo et al., which seemed to suggest that there is still a 

nonzero remanent polarization at 230 oC [38].  
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Fig. 4  Temperature-dependent piezoresponse evolution in an unpoled BNT-6BT ceramic. 

Out-of-plane amplitude images at various temperature: (a) 50 oC, (c) 120 oC, (e) 200 oC, and (g) 20 

oC, respectively. Out-of-plane phase images at various temperature, (b) 50 oC, (d) 120 oC, (f) 200 oC, 

and (h) 20 oC, respectively. (i) The relative change of piezoresponse as a function of heating 

temperature and the linear fitting result. 

 

A positive DC voltage of 40 V was applied to the tip during scanning to pole domains inside the 

inner square, then the poled domain state was examined upon heating. The analysis was focused on 

the whole poled region containing distinct domain patterns that constrast the “invisible” domain 

features before poling. The evolution of the out-of-plane PFM amplitude and phase images after 

poling as a function of temperature is presented in Fig. 5. As shown in Fig. 5(a-b), there are two 

types of regions in the poled area, i.e., the area originally occupied by domains with a strong 

amplitude response and distinct phase before poling (labeled as A), and the surrounding area 

containing domains with a weak amplitude response and blurry phase before poling (labeled as B). 
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At room temperature, external electrical field induces a long-range ordered polarization, as shown in 

Fig. 5(c-d). During the poling process, random domains are switched to one preferred orientation in 

region A, while the long-range ordered polarization is developed in region B. The mesoscopic 

polarization response unvaries up to 50 oC. With further increase of temperature, the PFM response 

in the poled region B vanishes below 90 oC (higher than the Td), while the mesoscopic polarization in 

the poled region A returns to randomly oriented polarizations with a weaker response. With 

temperature increasing to 150 oC, a weak PFM response subsists in region A, similar to the 

phenomenon described in Fig 4. Upon cooling to 75 oC, the PFM response looks similar to that at 90 

oC, i.e. with no domain-related features in region B and a random polarization distribution in region 

A, indicating the temperature-induced change of poled domains is irreversible. Noting that time 

relaxation may possibly induce back-switching in poled ceramics [39]. We have checked that the 

poled state maintains for 24 h at room temperature, avoiding the time relaxation influence in this 

work. 

 

 

Fig. 5  Temperature-dependent poled domain evolution in a BNT-6BT ceramic. (a) and (b) 

Out-of-plane amplitude and phase images at 25 oC before poling. (c) and (d) An inner square in red 

frame poled by a DC voltage. The corresponding amplitude evolution as a function of temperature: 
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(e) 50 oC, (g) 90 oC, (i) 150 oC, (k) 75 oC, respectively. The corresponding phase evolution as a 

function of temperature: (f) 50 oC, (h) 90 oC, (j) 150 oC, (l) 75 oC, respectively. 

 

 

Fig. 6  Schematic of the domain evolution in regard to electric field poling and zero-field heating in 

region A and region B (as labeled in Fig. 5). (a) Long-range ordered polarization with mesoscopic 

ferroelectric domains visible by PFM in region A and short-range ordered polarization with domains 

invisible by PFM in region B. (b) After poling, the long-range ordered ferroelectric domains in both 

regions A and B. (c) Upon zero field heating above Td, the long-range ordered ferroelectric domain 

returns to the polydomain polar state in region A and randomly oriented short-range polarizations in 

region B. 

 

4. Discussion 

The XRD analysis suggests that in BNT-6BT a tetragonal phase and a cubic phase coexist in the 

average structure, which is in agreement with some literature reports [11]. The domain patterns and 

domain evolution process observed by PFM are consistent with the Rietveld-refined structural 

models. There are domains with a strong ferroelectric response embedded in a matrix of blurry 

phase-contrast, corresponding to the ferroelectric tetragonal phase and an average cubic phase, 

respectively. Note that in the cubic phase, there might be domains of a size of only a few nanometers 
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which is below the resolution of PFM if the local structure is non-centrosymmetric. Therefore, these 

are the domains that may exist but "invisible" to PFM. The frequency dependence of the dielectric 

permittivity near Ts suggests a relaxor-ferroelectric nature of this material. Therefore, we believe that 

the relaxor behaviour in this ceramic is related to this average cubic phase based on the following 

reasons: 1) The regions without long-range ferroelectric domains can be effectively poled, which is 

characteristic of locally disordered relaxors. Furthermore, upon heating, the temperature-dependent 

domain contrast in the cubic region A reveals a depoling temperature which is consistent with what 

is observed in the dielectric permittivity. 2) Near the temperature Ts where the dielectric response 

exhibits frequency dispersion, no structural change can be detected by X-ray diffraction and no 

domain pattern change can be observed by PFM in the tetragonal component for an unpoled sample. 

It was also reported in many BNT-based ceramics and crystals that the dielectric shoulder develops 

before the dielectric permittivity reaches its maximum, while no phase transition was confirmed 

around the Ts [33, 34, 37]. This suggests that this dielectric dispersion around Ts is not related to a 

long-range phase transition in the ferroelectric phase, but rather a relaxor behavior [25].  

The domain configurations for the ferroelectric phase and the relaxor phase as well as their 

evolutions under electric field are schematically shown in Fig. 6. After poling, the BNT-6BT sample 

exhibits homogeneous out-of-plane projection of the polarizations that is switched to one preferred 

direction. A careful investigation on different regions on the surface of the sample suggests two 

transitions happen after poling, i.e. the switching of the ferroelectric domains to one preferred 

direction in region A, and the long-range ordered ferroelectric domain induced from the local 

polarizations in region B (Fig. 6(b)). The application of an electric field increases the long-range 

ordering, thereby increasing the ferroelectric interactions over a larger scale, as confirmed by the 
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XRD and Raman measurements in the literature [2, 27].  

The depoling temperature Td is the highest useful temperature for applications. A Td of around 76 oC 

is observed in the poled BNT-6BT ceramic, where the piezoelectric response fades away 

accompanied by a transition from the ferroelectric state to a relaxor state. It is possible that two 

processes happen around Td [28]. Firstly, the detexturization of the long-range ordered ferroelectric 

domains induced by an electric field. Secondly, the transition from the electric field-induced 

ferroelectric phase to the relaxor state. We have clearly observed these two kinds of transition 

simultaneously, as shown in Fig. 6(c). The long-range ordered ferroelectric domain induced from the 

ferroelectric phase returns to the polydomain polar state (ferroelectric phase) above Td. While, the 

ordered ferroelectric domain induced from the relaxor phase returns to the “invisible” state (relaxor 

state) with randomly oriented short-range polarization, suggesting the recovery of the cubic phase 

component upon heating.  

 

5. Conclusions 

The tetragonal and cubic phases are found to coexist in BNT-6BT of the MPB composition. The 

ferroelectric nanodomains and short-range ordered polarizations “invisible” to PFM resulting from 

two different structures are observed indirectly. The ferroelectric nanodomains remain stable from 

room temperature up to 200 oC, and no variation is observed going through the Ts. Application of an 

electric field induces the transition from a relaxor state to a ferroelectric phase and increases the 

long-range ordering of ferroelectric domains. The ferroelectric nanodomains and “invisible” domains 

exhibit different behaviors after poling as a function of temperature. Heating breaks the long-range 

ferroelectric domains and reestablishes the relaxor state above Td, i.e., rearrangement of polydomain 
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polar state in the tetragonal phase region and the reappear of “invisible” state in the cubic phase 

region. The mesoscopic-scale domain structure investigation in the MPB composition is significant 

for the understanding of the MPB native and its effects on the electric properties of this lead-free 

system. This systematically combined mesoscopic domains and crystal structure studies provides a 

better understanding of the structure-property relationship in the BNT-BT solid solution, which in 

turn will promote the use of lead-free piezoceramics in technological applications. 
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Graphic abstrate 

The mesoscopic domain structure and behavior of BNT-BT, in relation to the macroscopic crystal 

structure and dielectric permittivity, are studied systematically to give an insight into its long-, 

medium- and short-range ordering. The ferroelectric nanodomains and possibly local polarizations 

“invisible” to PFM coexisting in the ceramic samples are related to a tetragonal (ferroelectric state) 

and a cubic (relaxor state) phase, and exhibit different behaviors with electric field or temperature 

change.  


