120 research outputs found

    Methological quality of systematic reviews and meta-analyses on acupuncture for stroke: a review of review

    Get PDF
    Objective: To assess the methodological quality of systematic reviews and meta-analyses regarding acupuncture intervention for stroke and the primary studies within them. Methods: Two researchers searched PubMed, Cumulative index to Nursing and Allied Health Literature, Embase, ISI Web of Knowledge, Cochrane, Allied and Complementary Medicine, Ovid Medline, Chinese Biomedical Literature Database, China National Knowledge Infrastructure, Wanfang and Traditional Chinese Medical Database to identify systematic reviews and meta-analyses about acupuncture for stroke published from the inception to December 2016. Review characteristics and the criteria for assessing the primary studies within reviews were extracted. The methodological quality of the reviews was assessed using adapted Oxman and Guyatt Scale. The methodological quality of primary studies was also assessed. Results: Thirty-two eligible reviews were identified, 15 in English and 17 in Chinese. The English reviews were scored higher than the Chinese reviews (P=0.025), especially in criteria for avoiding bias and the scope of search. All reviews used the quality criteria to evaluate the methodological quality of primary studies, but some criteria were not comprehensive. The primary studies, in particular the Chinese reviews, had problems with randomization, allocation concealment, blinding, dropouts and withdrawals, intent-to-treat analysis and adverse events. Conclusions: Important methodological flaws were found in Chinese systematic reviews and primary studies. It was necessary to improve the methodological quality and reporting quality of both the systematic reviews published in China and primary studies on acupuncture for stroke

    A balanced Memristor-CMOS ternary logic family and its application

    Full text link
    The design of balanced ternary digital logic circuits based on memristors and conventional CMOS devices is proposed. First, balanced ternary minimum gate TMIN, maximum gate TMAX and ternary inverters are systematically designed and verified by simulation, and then logic circuits such as ternary encoders, decoders and multiplexers are designed on this basis. Two different schemes are then used to realize the design of functional combinational logic circuits such as a balanced ternary half adder, multiplier, and numerical comparator. Finally, we report a series of comparisons and analyses of the two design schemes, which provide a reference for subsequent research and development of three-valued logic circuits.Comment: 15 pages, 30 figure

    Magnetic shielding accelerates the proliferation of human neuroblastoma cell by promoting G1-phase progression

    Get PDF
    Organisms have been exposed to the geomagnetic field (GMF) throughout evolutionary history. Exposure to the hypomagnetic field (HMF) by deep magnetic shielding has recently been suggested to have a negative effect on the structure and function of the central nervous system, particularly during early development. Although changes in cell growth and differentiation have been observed in the HMF, the effects of the HMF on cell cycle progression still remain unclear. Here we show that continuous HMF exposure significantly increases the proliferation of human neuroblastoma (SH-SY5Y) cells. The acceleration of proliferation results from a forward shift of the cell cycle in G1-phase. The G2/M-phase progression is not affected in the HMF. Our data is the first to demonstrate that the HMF can stimulate the proliferation of SH-SY5Y cells by promoting cell cycle progression in the G1-phase. This provides a novel way to study the mechanism of cells in response to changes of environmental magnetic field including the GMF

    OKCAM: an ontology-based, human-centered knowledgebase for cell adhesion molecules

    Get PDF
    ‘Cell adhesion molecules’ (CAMs) are essential elements of cell/cell communication that are important for proper development and plasticity of a variety of organs and tissues. In the brain, appropriate assembly and tuning of neuronal connections is likely to require appropriate function of many cell adhesion processes. Genetic studies have linked and/or associated CAM variants with psychiatric, neurologic, neoplastic, immunologic and developmental phenotypes. However, despite increasing recognition of their functional and pathological significance, no systematic study has enumerated CAMs or documented their global features. We now report compilation of 496 human CAM genes in six gene families based on manual curation of protein domain structures, Gene Ontology annotations, and 1487 NCBI Entrez annotations. We map these genes onto a cell adhesion molecule ontology that contains 850 terms, up to seven levels of depth and provides a hierarchical description of these molecules and their functions. We develop OKCAM, a CAM knowledgebase that provides ready access to these data and ontologic system at http://okcam.cbi.pku.edu.cn. We identify global CAM properties that include: (i) functional enrichment, (ii) over-represented regulation modes and expression patterns and (iii) relationships to human Mendelian and complex diseases, and discuss the strengths and limitations of these data

    A Human-Specific De Novo Protein-Coding Gene Associated with Human Brain Functions

    Get PDF
    To understand whether any human-specific new genes may be associated with human brain functions, we computationally screened the genetic vulnerable factors identified through Genome-Wide Association Studies and linkage analyses of nicotine addiction and found one human-specific de novo protein-coding gene, FLJ33706 (alternative gene symbol C20orf203). Cross-species analysis revealed interesting evolutionary paths of how this gene had originated from noncoding DNA sequences: insertion of repeat elements especially Alu contributed to the formation of the first coding exon and six standard splice junctions on the branch leading to humans and chimpanzees, and two subsequent substitutions in the human lineage escaped two stop codons and created an open reading frame of 194 amino acids. We experimentally verified FLJ33706's mRNA and protein expression in the brain. Real-Time PCR in multiple tissues demonstrated that FLJ33706 was most abundantly expressed in brain. Human polymorphism data suggested that FLJ33706 encodes a protein under purifying selection. A specifically designed antibody detected its protein expression across human cortex, cerebellum and midbrain. Immunohistochemistry study in normal human brain cortex revealed the localization of FLJ33706 protein in neurons. Elevated expressions of FLJ33706 were detected in Alzheimer's brain samples, suggesting the role of this novel gene in human-specific pathogenesis of Alzheimer's disease. FLJ33706 provided the strongest evidence so far that human-specific de novo genes can have protein-coding potential and differential protein expression, and be involved in human brain functions

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore