7,834 research outputs found

    Feature Screening via Distance Correlation Learning

    Full text link
    This paper is concerned with screening features in ultrahigh dimensional data analysis, which has become increasingly important in diverse scientific fields. We develop a sure independence screening procedure based on the distance correlation (DC-SIS, for short). The DC-SIS can be implemented as easily as the sure independence screening procedure based on the Pearson correlation (SIS, for short) proposed by Fan and Lv (2008). However, the DC-SIS can significantly improve the SIS. Fan and Lv (2008) established the sure screening property for the SIS based on linear models, but the sure screening property is valid for the DC-SIS under more general settings including linear models. Furthermore, the implementation of the DC-SIS does not require model specification (e.g., linear model or generalized linear model) for responses or predictors. This is a very appealing property in ultrahigh dimensional data analysis. Moreover, the DC-SIS can be used directly to screen grouped predictor variables and for multivariate response variables. We establish the sure screening property for the DC-SIS, and conduct simulations to examine its finite sample performance. Numerical comparison indicates that the DC-SIS performs much better than the SIS in various models. We also illustrate the DC-SIS through a real data example.Comment: 32 pages, 5 tables and 1 figure. Wei Zhong is the corresponding autho

    Integrated airfoil and blade design method for large wind turbines

    Get PDF
    This paper presents an integrated method for designing airfoil families of large wind turbine blades. For a given rotor diameter and tip speed ratio, the optimal airfoils are designed based on the local speed ratios. To achieve high power performance at low cost, the airfoils are designed with an objective of high Cp and small chord length. When the airfoils are obtained, the optimum flow angle and rotor solidity are calculated which forms the basic input to the blade design. The new airfoils are designed based on the previous in-house airfoil family which were optimized at a Reynolds number of 3 million. A novel shape perturbation function is introduced to optimize the geometry on the existing airfoils and thus simplify the design procedure. The viscos/inviscid code Xfoil is used as the aerodynamic tool for airfoil optimization where the Reynolds number is set at 16 million with a free-stream Mach number of 0.25 at the blade tip. Results show that these new airfoils achieve high power coefficient in a wide range of angles of attack (AOA) and they are extremely insensitive to surface roughness

    Comparisons between LES and Wind Tunnel Hot-Wire Measurements

    Get PDF
    • …
    corecore