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Abstract. In the present study, a large number of acoustic simulations are carried out for a low noise 

airfoil with different Trailing Edge Serrations (TES). The Ffowcs Williams-Hawkings (FWH) acoustic 

analogy is used for noise prediction at trailing edge. The acoustic solver is running on the platform of 

our in-house incompressible flow solver EllipSys3D. The flow solution is first obtained from the 

Large Eddy Simulation (LES), the acoustic part is then carried out based on the instantaneous 

hydrodynamic pressure and velocity field. To obtain the time history data of sound pressure, the flow 

quantities are integrated around the airfoil surface through the FWH approach. For all the simulations, 

the chord based Reynolds number is around 1.5x106. In the test matrix, the effects from angle of attack, 

the TE flap angle, the length/width of the TES are investigated. Even though the airfoil under 

investigation is already optimized for low noise emission, most numerical simulations and wind tunnel 

experiments show that the noise level is further decreased by adding the TES device.  
 

1.  Objectives 

 

To further reduce wind turbine aerodynamically generated noise, smart design at blade trailing edge 

(TE) using active or passive flow control become popular choices to control the total dB level. Active 

flow control, such as wall suction [1] has shown positive effect on the TE noise reduction by 

decreasing the boundary layer thickness at TE. Other active control, such as flow blowing flap [2], is 

demonstrated that the blowing greatly weakens the vortex system and deceases noise generation. As a 

feasible technique, passive flow control methods for wind turbine blades are more practical. For 

example, the passive devices at TE can be either brushes [3, 4] and serrations [5, 6, 7, 8, 9] or even 

porous serrations [10]. The TE brushes and serrations for wind turbine applications are still under 

investigation. Physical understanding of flow mechanisms around serrations is needed in order to carry 

out detailed design work. The identification of the flow mechanisms by which the airfoil noise 

reduction is achieved is an important task. Based on the works of bionic structure of the owl [10, 11], 

some significant applications to develop silent airframes [12], wind turbine rotors [9] and many other 

aerodynamic structures [13] are successfully achieved.  

 

The aim of the current work is to numerically investigate the effect of TES. Quite many previous 

achievements on serrated airfoil investigations were carried out experimentally. Despite the truth that 

noise reduction of each airfoil and rotor blade is achieved, the differences of experimental 

observations exist. Based on different experimental conditions, such as Reynolds number and flow 
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angle of attack, the reduction of airfoil noise seems to be a function of frequency. On the modelling 

side, it is expected that advanced computational aero-acoustic methods can provide more accurate 

prediction of noise from a serrated trailing edge. So far, the parametric trends of airfoil noise reduction 

using various serration geometries require more research on this topic. In order to find some general 

trend from TES, a large number of LES/FWH simulations are carried out in the present research.  

 

2.  Numerical methods 

In this work, the integrated formulation proposed by Farassat [14] is applied. The formulation is the 

solution of the FW-H equation with surface sources only when the surface moves at subsonic speed. 

This formulation has been successfully used for helicopter rotor and propeller noise predictions. At the 

retarded or emission time, the thickness and loading noise equations are written as 
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     The right hand sides of Eqs. (1) and (2) are the integrations of time history variables obtained from 

flow calculations. The variables include wall normal velocity vn, the Mach number of the source in the 

radiation direction Mr, the pressure on the solid wall surface p, the distance between source and 

receiver r, the angle between radiation direction and the local wall normal direction θ. The acoustic 

solver may run in parallel with flow model, in practice the acoustic solver starts when the flow-field is 

fully established. The necessary time history flow data are recoded in advance in order to calculate the 

time derivatives at emission time.  

For the flow simulations, the filtered incompressible equations are solved by the in-house EllipSys3D 

code [15, 16]. The momentum, turbulent stresses and eddy viscosity equations are applied to obtain 

the flow data.   
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In Eqs. (3) and (4), the first filter is identified by a bar ( ) which is due to the finest mesh. The 

turbulent stresses 𝜏𝑖𝑗 defined in Eq. (4) are modelled with an eddy viscosity. The eddy viscosity is then 

calculated by a mixed scale model where   is vorticity,  
1/3

x y z     is an average grid size, C is 

the model constant and 0.5  . 

3.  LES/Acoustic tests and validations 

The airfoil geometry and the flow conditions are set according to the experiments: 

1.  Airfoil: CQU-DTU-LN118 airfoil, chord=0.6m, span=1.8m (0.6m effective span is used for 

noise integration). 

2.  Angles of Attack: 0, 4 and 8 degrees.  

3.  Wind Speed=45 m/s. Sound speed=344 m/s. 
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The airfoil under investigation is the in-house designed low noise airfoil with 18% relative 

thickness.  The microphone array has a focus region such that the noise signal is collected along a span 

of 0.6m. According to the measurements, similar procedure is carried out during LES simulation 

where acoustic integration is applied in same region over the suction wall surface. LES simulations 

were conducted at a wind speed of 45m/s and angles of attack of 0,4 and 8 degrees.  

The variables that are included in the test matrix are shown in Table 1 where α is the flow angle of 

attack, β is the flap angle of the TES, L/c is the normalized amplitude (length) of TES, λ/L is the 

aspect ratio between the wavelength (width) and the amplitude. By taking into account all the 

parameters, the total number of simulation will be 81 which is quite time consuming. To reduce the 

computational effort, the λ/L configuration is only considered for the cases of L/c=21%, β=0o and α=0 

o, 4 o, 8o. Therefore the computational matrix consists of 39 simulations in total, including simulations 

of the baseline airfoil.  

 

α (o) 0 4 8 

β (o) -5 0 5 

L/c  7% 14% 21% 

λ/L 0.25 0.5 1 

Table 1: The test parameters. 

 

     Time history data are recorded at 11 locations near the TE. As shown in Figure 1 (a), there are 9 

locations distributed along the airfoil span at the chord-wise location of x/c=98%, there are two more 

points located at x/c=102% and 106%. At each of the test location, velocity and pressure data are 

saved for 64 points which are distributed in the wall normal direction. The corresponding sound 

pressure level is seen in Figure 2 for angle of attack 0o, 4o and 8o degrees. The noise level is seen 

increased while angle of attack increases. Noise reduction is found from most of the simulations with 

the TES.  

 
(a) 
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(b)                                                      (c) 

Fig. 1. (a) The locations of the test points; (b) Wall surface mesh; (c) Mesh side view. 

 

At each of the test location, velocity and pressure data are saved for 64 points which are distributed in 

the wall normal direction. An example of the recorded velocity signal is shown in Figure 2. The 

simulation is started at time zero and stabilized after some iteration. From data1 to data16, the velocity 

gradually increase as the off-wall distance becomes larger. The full geometry of the TES is shown in 

Figure 3. The first three rows are the combination of TES flap angle and the amplitude (the root to tip 

length of the TES), the last row shows the aspect ratio between the wavelength and amplitude. For 

these 12 cases, three flow angles of attack are considered, that is in total 12x3 simulations. 

 
Fig. 2. Example of the time history velocity along wall normal direction. 
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Fig. 3. The full picture of all the TES test matrix. 

 

 

For each LES simulation, time history data (pressure and three velocity components) are saved at 11 

test positions (see Fig. 1). Each position contains 64 points along wall normal direction to record the 

boundary layer information. Simulations are repeated for 39 times according to the parameter changes 

(Table 1).  

 

As shown in Figure 1(b) and (c) a C-type 3D volume mesh is created based on the wall surface mesh. 

According to the earlier works [17, 18], the mesh resolution in terms of wall units shall be small and 

satisfy certain cell aspect ratio limitations. In the present case, the first wall cell size ∆y is in the order 

of 10-5 chords and the ratio of ∆x/∆y is around 25 along the airfoil wall surface with ∆x indicates grid 

size in the flow direction. Periodic flow condition is assumed at the two ends. The total number of 

blocks is 200 for the meshes with one serration.   

 

For the current LES simulations of TES, the computational efficiency has been considered as an 

important factor. It is expected that the use of a large span size with more serrations represents flow-

field better than using a narrow span. It is often a practical issue of choosing resonable span size, 

which is typically limitted by the avialable computer resources. The left plot in Fig. 4 shows the Cp 

results computed with SpanA and SpanB where SpanA contains 3 serrations and SpanB contains 1 

serration.  The difference between the two curves is hardly seen from the plot that indicates flow three-

dimensionality is not playing an important role at this angle of attack. However, attention should be 

paid at very large angles of attack where three dimentional effect can be more significant. On the right 

plot in Fig. 4, the Cp values are compared at two spanwise locations: the values cut through serration 

tip (SliceA) and through serration root (SliceB). As it can be seen that SliceA has an extended area at 

trailing edge which is due to the contribution from the serration. As observed from the comparion, 
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some small deviation does exist near the traling edge, which only makes little change in flow-field but 

is enough to generate noise at different levels. 

  

Fig. 4. Cp comparisons with effect of different span size (left) and with a same span size but cut at 

different spanwise locations (right). 

 

 

Figures 5 is the stream-wise mean velocity (Fig. 5 (a,c,e)) and stream-wise turbulent stress (Fig. 5 

b,d,f). The results are obtained at angles of attack 0, 4 and 8 degrees. The baseline airfoil is used as 

reference to compare with serrated airfoils. Along the airfoil span positions, it can be seen that the 

mean velocity profile is overlapped with each other for all three angles of attack as expected. The 

increase of boundary layer thickness is also observed while angle attack increases. The fluctuating part, 

such as the turbulent stresses, have some small variation in amplitude. The sound pressure level of the 

baseline airfoil is shown in Fig. 6. The noise level is increasing as angle of attack changes from 0 to 8 

degrees. At higher angle of attack, the larger scale fluctuation also creates higher low frequency noise, 

as seen from Fig.6.  Fig. 7 is the flow results obtained from airfoils with TES. The caption of Fig. 7 

‘λ/L0.5-β0-L/c14-0/4/8AoA’ has the following the meaning: ‘λ/L0.5’ means wavelength to amplitude 

ratio is 0.5, ‘β0’ means zero TE flap angle, ‘L/c14’ means amplitude to airfoil chord ratio is 14%, 

‘0/4/8AoA’ means for all three angles of attack. The results obtained from boundary layer flow clearly 

show some differences from the case with original airfoil, especially the turbulent stress. The tendency 

of the boundary layer thickness is found such that the the thickness is smaller in the middle of the 

serration. The increase of angle of attack always leads to increase of boundary layer thickness which is 

the same as baseline airfoil. The sound pressure level is reduced by introducing the TES. Fig. 8 shows 

the spectra at three angles of attack. More noise reduction is seen towards low frequency part, where 

almost 10dB reduction is seen at 500Hz with angle of attack 8 degrees. Fig. 9 shows similar results as 

Fig.8, but with a smaller wavelength. With a smaller wavelength of the TES, the noise level is slightly 

increased. Again, Fig. 10 obtains similar results as Fig. 8, but with an increased flap angle of β5. It is 

seen that there is a little noise reduction for the case of zero AoA, there is no significant change for 

other AoAs. Fig. 11 shows the relative noise reduction as compared with the baseline airfoil. In 

general, it shows that when angle of attack is increased, less overall reduction is achieved for the 

present TES configuration. 
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  (a)                                                                     (b) 

 
(c)                                                                     (d) 

 
(e)                                                                     (f) 

Fig. 5 Non-dimensional flow results: Original airfoil. 0/4/8 degrees 
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Fig. 6 Acoustic results: Original airfoil. 0/4/8 degrees 

 
(a)                                                                     (b) 

 
(c)                                                                     (d) 
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(e)                                                                     (f) 

Fig. 7 Non-dimensional flow results: λ/L0.5-β0-L/c14-0/4/8AoA 

 
 

Fig. 8 Acoustic results: λ/L0.5-β0-L/c14 

 
Fig. 9 Acoustic results: λ/L0.25-β0-L/c21 
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Fig. 10 Acoustic results: λ/L0.5-β5-L/c14 

 

 
 

Fig. 11 Relative noise reduction. 

 

 

4. Conclusions 

During the parametric study of the TES, it is found that the noise level of the current airfoil is reduced 

nearly in all the configurations over a large range of frequency. It is observed that when the ‘L/c’ ratio 

increases, the change of the turbulent stress is large which indicates stronger spanwise variation. The 

present airfoil is a non-symmetric wind turbine airfoil, the change of TE flap angle from -5 to 5 

degrees gives quite significant difference at the trailing edge flow. The case with β=-5o gives more 3D 

effects along the spanwise direction where the difference of the mean velocity and the turbulent stress 

is much larger along the span. The combination of ‘λ/L, β, L/c, α’ becomes four-dimensional which 

makes the conclusion more difficult. The general tendency is that a smaller wavenumber to amplitude 

ratio (λ/L) and negative flap angle give more noise reduction. In terms of reduction as function of 

frequency, the noise level is most reduced at lower frequency. For different flow angles, the most 

reduction is found at zero degrees where noise is reduced at frequency around 1kHz-3kHz.   
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