1,984 research outputs found

    MICROSOFT-NOKIA MERGER CONTROL IN EAST ASIA

    Get PDF
    MICROSOFT-NOKIA MERGER CONTROL IN EAST ASI

    High and Increasing Oxa-51 DNA Load Predict Mortality in Acinetobacter baumannii Bacteremia: Implication for Pathogenesis and Evaluation of Therapy

    Get PDF
    BACKGROUND: While quantification of viral loads has been successfully employed in clinical medicine and has provided valuable insights and useful markers for several viral diseases, the potential of measuring bacterial DNA load to predict outcome or monitor therapeutic responses remains largely unexplored. We tested this possibility by investigating bacterial loads in Acinetobacter baumannii bacteremia, a rapidly increasing nosocomial infection characterized by high mortality, drug resistance, multiple and complicated risk factors, all of which urged the need of good markers to evaluate therapeutics. METHODS AND FINDINGS: We established a quantitative real-time PCR assay based on an A. baumannii-specific gene, Oxa-51, and conducted a prospective study to examine A. baumannii loads in 318 sequential blood samples from 51 adults patients (17 survivors, 34 nonsurvivors) with culture-proven A. baumannii bacteremia in the intensive care units. Oxa-51 DNA loads were significantly higher in the nonsurvivors than survivors on day 1, 2 and 3 (P=0.03, 0.001 and 0.006, respectively). Compared with survivors, nonsurvivors had higher maximum Oxa-51 DNA load and a trend of increase from day 0 to day 3 (P<0.001), which together with Pitt bacteremia score were independent predictors for mortality by multivariate analysis (P=0.014 and 0.016, for maximum Oxa-51 DNA and change of Oxa-51 DNA, respectively). Kaplan-Meier analysis revealed significantly different survival curves in patients with different maximum Oxa-51 DNA and change of Oxa-51 DNA from day 0 to day 3. CONCLUSIONS: High Oxa-51 DNA load and its initial increase could predict mortality. Moreover, monitoring Oxa-51 DNA load in blood may provide direct parameters for evaluating new regimens against A. baumannii in future clinical studies

    Visual gene-network analysis reveals the cancer gene co-expression in human endometrial cancer

    Get PDF
    Abstract Background Endometrial cancers (ECs) are the most common form of gynecologic malignancy. Recent studies have reported that ECs reveal distinct markers for molecular pathogenesis, which in turn is linked to the various histological types of ECs. To understand further the molecular events contributing to ECs and endometrial tumorigenesis in general, a more precise identification of cancer-associated molecules and signaling networks would be useful for the detection and monitoring of malignancy, improving clinical cancer therapy, and personalization of treatments. Results ECs-specific gene co-expression networks were constructed by differential expression analysis and weighted gene co-expression network analysis (WGCNA). Important pathways and putative cancer hub genes contribution to tumorigenesis of ECs were identified. An elastic-net regularized classification model was built using the cancer hub gene signatures to predict the phenotypic characteristics of ECs. The 19 cancer hub gene signatures had high predictive power to distinguish among three key principal features of ECs: grade, type, and stage. Intriguingly, these hub gene networks seem to contribute to ECs progression and malignancy via cell-cycle regulation, antigen processing and the citric acid (TCA) cycle. Conclusions The results of this study provide a powerful biomarker discovery platform to better understand the progression of ECs and to uncover potential therapeutic targets in the treatment of ECs. This information might lead to improved monitoring of ECs and resulting improvement of treatment of ECs, the 4th most common of cancer in women.Peer Reviewe

    SNP-RFLPing 2: an updated and integrated PCR-RFLP tool for SNP genotyping

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>PCR-restriction fragment length polymorphism (RFLP) assay is a cost-effective method for SNP genotyping and mutation detection, but the manual mining for restriction enzyme sites is challenging and cumbersome. Three years after we constructed SNP-RFLPing, a freely accessible database and analysis tool for restriction enzyme mining of SNPs, significant improvements over the 2006 version have been made and incorporated into the latest version, SNP-RFLPing 2.</p> <p>Results</p> <p>The primary aim of SNP-RFLPing 2 is to provide comprehensive PCR-RFLP information with multiple functionality about SNPs, such as SNP retrieval to multiple species, different polymorphism types (bi-allelic, tri-allelic, tetra-allelic or indels), gene-centric searching, HapMap tagSNPs, gene ontology-based searching, miRNAs, and SNP500Cancer. The RFLP restriction enzymes and the corresponding PCR primers for the natural and mutagenic types of each SNP are simultaneously analyzed. All the RFLP restriction enzyme prices are also provided to aid selection. Furthermore, the previously encountered updating problems for most SNP related databases are resolved by an on-line retrieval system.</p> <p>Conclusions</p> <p>The user interfaces for functional SNP analyses have been substantially improved and integrated. SNP-RFLPing 2 offers a new and user-friendly interface for RFLP genotyping that can be used in association studies and is freely available at <url>http://bio.kuas.edu.tw/snp-rflping2</url>.</p

    Decoding Affect in Dyadic Conversations: Leveraging Semantic Similarity through Sentence Embedding

    Full text link
    Recent advancements in Natural Language Processing (NLP) have highlighted the potential of sentence embeddings in measuring semantic similarity. Yet, its application in analyzing real-world dyadic interactions and predicting the affect of conversational participants remains largely uncharted. To bridge this gap, the present study utilizes verbal conversations within 50 married couples talking about conflicts and pleasant activities. Transformer-based model all-MiniLM-L6-v2 was employed to obtain the embeddings of the utterances from each speaker. The overall similarity of the conversation was then quantified by the average cosine similarity between the embeddings of adjacent utterances. Results showed that semantic similarity had a positive association with wives' affect during conflict (but not pleasant) conversations. Moreover, this association was not observed with husbands' affect regardless of conversation types. Two validation checks further provided support for the validity of the similarity measure and showed that the observed patterns were not mere artifacts of data. The present study underscores the potency of sentence embeddings in understanding the association between interpersonal dynamics and individual affect, paving the way for innovative applications in affective and relationship sciences

    S3^3M-Net: Joint Learning of Semantic Segmentation and Stereo Matching for Autonomous Driving

    Full text link
    Semantic segmentation and stereo matching are two essential components of 3D environmental perception systems for autonomous driving. Nevertheless, conventional approaches often address these two problems independently, employing separate models for each task. This approach poses practical limitations in real-world scenarios, particularly when computational resources are scarce or real-time performance is imperative. Hence, in this article, we introduce S3^3M-Net, a novel joint learning framework developed to perform semantic segmentation and stereo matching simultaneously. Specifically, S3^3M-Net shares the features extracted from RGB images between both tasks, resulting in an improved overall scene understanding capability. This feature sharing process is realized using a feature fusion adaption (FFA) module, which effectively transforms the shared features into semantic space and subsequently fuses them with the encoded disparity features. The entire joint learning framework is trained by minimizing a novel semantic consistency-guided (SCG) loss, which places emphasis on the structural consistency in both tasks. Extensive experimental results conducted on the vKITTI2 and KITTI datasets demonstrate the effectiveness of our proposed joint learning framework and its superior performance compared to other state-of-the-art single-task networks. Our project webpage is accessible at mias.group/S3M-Net.Comment: accepted to IEEE Trans. on Intelligent Vehicles (T-IV
    corecore