3,982 research outputs found

    De novo transcriptome sequencing and analysis of the juvenile and adult stages of Fasciola gigantica

    Get PDF
    Fasciola gigantica is regarded as the major liver fluke causing fasciolosis in livestock in tropical countries. Despite the significant economic and public health impacts of F. gigantica there are few studies on the pathogenesis of this parasite and our understanding is further limited by the lack of genome and transcriptome information. In this study, de novo Illumina RNA sequencing (RNA-seq) was performed to obtain a comprehensive transcriptome profile of the juvenile (42 days post infection) and adult stages of F. gigantica. A total of 49,720 unigenes were produced from juvenile and adult stages of F. gigantica, with an average length of 1286 nucleotides (nt) and N50 of 2076 nt. A total of 27,862 (56.03%) unigenes were annotated by BLAST similarity searches against the NCBI non-redundant protein database. Because the F. gigantica needs to feed and/or digest host tissues, some proteases (including cysteine proteases and aspartic proteases), which play a role in the degradation of host tissues (protein), have been paid more attention in the present study. A total of 6511 distinct genes were found differentially expressed between juveniles and adults, of which 3993 genes were up-regulated and 2518 genes were down-regulated in adults versus juveniles, respectively. Moreover, stage-specific differentially expressed genes were identified in juvenile (17,009) and adult (6517) F. gigantica. The significantly divergent pathways of differentially expressed genes included cAMP signaling pathway (226; 4.12%), proteoglycans in cancer (256; 4.67%) and focal adhesion (199; 3.63%). The transcription pattern also revealed two egg-laying-associated pathways: cGMP-PKG signaling pathway and TGF-β signaling pathway. This study provides the first comparative transcriptomic data concerning juvenile and adult stages of F. gigantica that will be of great value for future research efforts into understanding parasite pathogenesis and developing vaccines against this important parasite

    Tillage condition effects on soil/plow-breast flow interaction of a horizontally reversible plow

    Get PDF
    Abstract : The horizontally reversible plow (HRP) is commonly utilized because of higher performances than the regular mold-board plow. Soil/plow surface flow interaction during HRP tillage trends to incur so severe pressure on the plow-breast as to reduce the plow life. This paper numerically characterized the soil/plow-breast flow interaction and subsequently assessed tillage-condition effects on the plow-breast surface. These tillage conditions herein involved tool speed and operation-al depth. The simulations showed that for either tool speed or operational depth the maximum pressure appeared at the plow-shank of the plow-breast and that the soil pressures were increased with them. The computational fluid dynamics (CFD) based predictions qualitatively agreed with the preliminary experimental results at the identified settings with scanning electronic microscopy. Once again, CFD analysis is demonstrated to be feasible and effective enough to provide insight into improve the horizontally reversible plow by predicting real soil behaviors

    2-Meth­oxy-6-(6-methyl-1H-benzimidazol-2-yl)phenol

    Get PDF
    The mol­ecule of the title compound, C15H14N2O2 is almost planar, the dihedral angle between the 6-methyl-1H-benz­imidazole plane and the 2-methoxy­phenol plane being 6.9 (2)°. An intra­molecular O—H⋯N hydrogen bond is present. Adjacent mol­ecules are linked by N—H⋯O hydrogen bonds into a three-dimensional network structure. The benzoimidazole methyl group and its attached C atom are positionally disordered in a 0.724 (4):0.276 (4) ratio

    4-{(Z)-(sec-Butyl­amino)(phen­yl)methyl­ene}-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one

    Get PDF
    In the title compound, C21H23N3O, the dihedral angles formed by the pyrazolone ring with two phenyl rings are 10.38 (8) and 76.94 (6)°. The sec-butyl­amino group is disordered over two positions, with refined site-occupancy factors of 0.730 (4) and 0.270 (4). The compound could potentially be ligand stabilized in the solid state in a keto–enamine tautomeric form. The amine functionality is involved in an intra­molecular N—H⋯O hydrogen bond, while weak inter­molecular C—H⋯O and C—H⋯N hydrogen bonds participate in the formation of the crystal structure
    corecore