5,117 research outputs found

    Universality of returning electron wave packet in high-order harmonic generation with midinfrared laser pulses

    Get PDF
    We show that a returning electron wave packet in high-order harmonic generation (HHG) with midinfrared laser pulses converges to a universal limit for a laser wavelength above about 3  μm. The results are consistent among the different methods: a numerical solution of the time-dependent Schrödinger equation, the strong-field approximation, and the quantum orbits theory. We further analyze how the contribution from different electron “trajectories” survives the macroscopic propagation in the medium. Our result thus provides a new framework for investigating the wavelength scaling law for the HHG yields

    Experimental Trapped-ion Quantum Simulation of the Kibble-Zurek dynamics in momentum space

    Get PDF
    The Kibble-Zurek mechanism is the paradigm to account for the nonadiabatic dynamics of a system across a continuous phase transition. Its study in the quantum regime is hindered by the requisite of ground state cooling. We report the experimental quantum simulation of critical dynamics in the transverse-field Ising model by a set of Landau-Zener crossings in pseudo-momentum space, that can be probed with high accuracy using a single trapped ion. We test the Kibble-Zurek mechanism in the quantum regime in the momentum space and find the measured scaling of excitations is in accordance with the theoretical prediction.Comment: 10 pages, 3 figures Published in Scientific Reports, http://www.nature.com/articles/srep3338

    Perspective of monochromatic gamma-ray line detection with the High Energy cosmic-Radiation Detection (HERD) facility onboard China's Space Station

    Full text link
    HERD is the High Energy cosmic-Radiation Detection instrument proposed to operate onboard China's space station in the 2020s. It is designed to detect energetic cosmic ray nuclei, leptons and photons with a high energy resolution (1%\sim1\% for electrons and photons and 20%20\% for nuclei) and a large geometry factor (>3m2sr>3\,{ m^2\,sr} for electrons and diffuse photons and >2m2sr>2\,{ m^2\,sr} for nuclei). In this work we discuss the capability of HERD to detect monochromatic γ\gamma-ray lines, based on simulations of the detector performance. It is shown that HERD will be one of the most sensitive instruments for monochromatic γ\gamma-ray searches at energies between 10\sim10 to a few hundred GeV. Above hundreds of GeV, Cherenkov telescopes will be more sensitive due to their large effective area. As a specific example, we show that a good portion of the parameter space of a supersymmetric dark matter model can be probed with HERD.Comment: 9 pages, 7 figures, matches version published in Astropart.Phy
    corecore