1,177 research outputs found

    Online-offline activities and game-playing behaviors of avatars in a massive multiplayer online role-playing game

    Full text link
    Massive multiplayer online role-playing games (MMORPGs) are very popular in China, which provides a potential platform for scientific research. We study the online-offline activities of avatars in an MMORPG to understand their game-playing behavior. The statistical analysis unveils that the active avatars can be classified into three types. The avatars of the first type are owned by game cheaters who go online and offline in preset time intervals with the online duration distributions dominated by pulses. The second type of avatars is characterized by a Weibull distribution in the online durations, which is confirmed by statistical tests. The distributions of online durations of the remaining individual avatars differ from the above two types and cannot be described by a simple form. These findings have potential applications in the game industry.Comment: 6 EPL pages including 10 eps figure

    DeepVar: An End-to-End Deep Learning Approach for Genomic Variant Recognition in Biomedical Literature

    Full text link
    We consider the problem of Named Entity Recognition (NER) on biomedical scientific literature, and more specifically the genomic variants recognition in this work. Significant success has been achieved for NER on canonical tasks in recent years where large data sets are generally available. However, it remains a challenging problem on many domain-specific areas, especially the domains where only small gold annotations can be obtained. In addition, genomic variant entities exhibit diverse linguistic heterogeneity, differing much from those that have been characterized in existing canonical NER tasks. The state-of-the-art machine learning approaches in such tasks heavily rely on arduous feature engineering to characterize those unique patterns. In this work, we present the first successful end-to-end deep learning approach to bridge the gap between generic NER algorithms and low-resource applications through genomic variants recognition. Our proposed model can result in promising performance without any hand-crafted features or post-processing rules. Our extensive experiments and results may shed light on other similar low-resource NER applications.Comment: accepted by AAAI 202

    An evolutionary algorithm with double-level archives for multiobjective optimization

    Get PDF
    Existing multiobjective evolutionary algorithms (MOEAs) tackle a multiobjective problem either as a whole or as several decomposed single-objective sub-problems. Though the problem decomposition approach generally converges faster through optimizing all the sub-problems simultaneously, there are two issues not fully addressed, i.e., distribution of solutions often depends on a priori problem decomposition, and the lack of population diversity among sub-problems. In this paper, a MOEA with double-level archives is developed. The algorithm takes advantages of both the multiobjective-problemlevel and the sub-problem-level approaches by introducing two types of archives, i.e., the global archive and the sub-archive. In each generation, self-reproduction with the global archive and cross-reproduction between the global archive and sub-archives both breed new individuals. The global archive and sub-archives communicate through cross-reproduction, and are updated using the reproduced individuals. Such a framework thus retains fast convergence, and at the same time handles solution distribution along Pareto front (PF) with scalability. To test the performance of the proposed algorithm, experiments are conducted on both the widely used benchmarks and a set of truly disconnected problems. The results verify that, compared with state-of-the-art MOEAs, the proposed algorithm offers competitive advantages in distance to the PF, solution coverage, and search speed

    The theoretical direct-band-gap optical gain of Germanium nanowires

    Full text link
    We calculate the electronic structures of Germanium nanowires by taking the effective-mass theory. The electron and hole states at the G-valley are studied via the eight-band k.p theory. For the [111] L-valley, we expand the envelope wave function using Bessel functions to calculate the energies of the electron states for the first time. The results show that the energy dispersion curves of electron states at the L-valley are almost parabolic irrespective of the radius of Germanium nanowires. Based on the electronic structures, the density of states of Germanium nanowires are also obtained, and we find that the conduction band density of states mostly come from the electron states at the L-valley because of the eight equivalent degenerate L points in Germanium. Furthermore, the optical gain spectra of Germanium nanowires are investigated. The calculations show that there are no optical gain along z direction even though the injected carrier density is 4x1019 cm-3 when the doping concentration is zero, and a remarkable optical gain can be obtained when the injected carrier density is close to 1x1020 cm-3, since a large amount of electrons will prefer to occupy the low-energy L-valley. In this case, the negative optical gain will be encountered considering free-carrier absorption loss as the increase of the diameter. We also investigate the optical gain along z direction as functions of the doping concentration and injected carrier density for the doped Germanium nanowires. When taking into account free-carrier absorption loss, the calculated results show that a positive net peak gain is most likely to occur in the heavily doped nanowires with smaller diameters. Our theoretical studies are valuable in providing a guidance for the applications of Germanium nanowires in the field of microelectronics and optoelectronics

    Division of labor, skill complementarity, and heterophily in socioeconomic networks

    Get PDF
    Constituents of complex systems interact with each other and self-organize to form complex networks. Empirical results show that the link formation process of many real networks follows either the global principle of popularity or the local principle of similarity or a tradeoff between the two. In particular, it has been shown that in social networks individuals exhibit significant homophily when choosing their collaborators. We demonstrate, however, that in populations in which there is a division of labor, skill complementarity is an important factor in the formation of socioeconomic networks and an individual's choice of collaborators is strongly affected by heterophily. We analyze 124 evolving virtual worlds of a popular "massively multiplayer online role-playing game" (MMORPG) in which people belong to three different professions and are allowed to work and interact with each other in a somewhat realistic manner. We find evidence of heterophily in the formation of collaboration networks, where people prefer to forge social ties with people who have professions different from their own. We then construct an economic model to quantify the heterophily by assuming that individuals in socioeconomic systems choose collaborators that are of maximum utility. The results of model calibration confirm the presence of heterophily. Both empirical analysis and model calibration show that the heterophilous feature is persistent along the evolution of virtual worlds. We also find that the degree of complementarity in virtual societies is positively correlated with their economic output. Our work sheds new light on the scientific research utility of virtual worlds for studying human behaviors in complex socioeconomic systems.Comment: 14 Latex pages + 3 figure

    Brain natriuretic peptide suppresses pain induced by BmK I, a sodium channel-specific modulator, in rats.

    Get PDF
    Background: A previous study found that brain natriuretic peptide (BNP) inhibited inflammatory pain via activating its receptor natriuretic peptide receptor A (NPRA) in nociceptive sensory neurons. A recent study found that functional NPRA is expressed in almost all the trigeminal ganglion (TG) neurons at membrane level suggesting a potentially important role for BNP in migraine pathophysiology. Methods: An inflammatory pain model was produced by subcutaneous injection of BmK I, a sodium channel-specific modulator from venom of Chinese scorpion Buthus martensi Karsch. Quantitative PCR, Western Blot, and immunohistochemistry were used to detect mRNA and protein expression of BNP and NPRA in dorsal root ganglion (DRG) and dorsal horn of spinal cord. Whole-cell patch clamping experiments were conducted to record large-conductance Ca2+-activated K+ (BKCa) currents of membrane excitability of DRG neurons. Spontaneous and evoked pain behaviors were examined. Results: The mRNA and protein expression of BNP and NPRA was up-regulated in DRG and dorsal horn of spinal cord after BmK I injection. The BNP and NPRA was preferentially expressed in small-sized DRG neurons among which BNP was expressed in both CGRP-positive and IB4-positive neurons while NPRA was preferentially expressed in CGRP-positive neurons. BNP increased the open probability of BKCa channels and suppressed the membrane excitability of small-sized DRG neurons. Intrathecal injection of BNP significantly inhibited BmK-induced pain behaviors including both spontaneous and evoked pain behaviors. Conclusions: These results suggested that BNP might play an important role as an endogenous pain reliever in BmK I-induced inflammatory pain condition. It is also suggested that BNP might play a similar role in other pathophysiological pain conditions including migraine

    Boty-like retrotransposons in the filamentous fungus Botrytis cinerea contain the additional antisense gene brtn

    Get PDF
    AbstractLong-terminal repeat (LTR) retrotransposons typically contain gag, pol, or gag–pol, and in some case env genes. In this work, we used data mining of the Botrytis cinerea genomic sequence and a molecular approach to identify Boty-like LTR retrotransposons in B. cinerea containing an antisense gene (brtn) between pol and the 3′-LTR. Reverse transcriptase PCR (RT-PCR) revealed that some brtn-like genes could be expressed, at least in B. cinerea T4. We conducted BLAST comparisons and conserved-domain analysis, but the function of putative BRTN is presently unknown. Boty-like LTR retrotransposons in Sclerotinia sclerotiorum, called ScscLRET and containing brtn homologs at positions similar to brtn, were detected by homology searches and data mining of the S. sclerotiorum 1980 genomic sequence. Thus, this study demonstrated that some fungal LTR retrotransposons contain additional antisense genes
    • …
    corecore