2,364 research outputs found
Minimally invasive treatment of oligometastasis in the liver in recurrent nasopharyngeal carcinoma
published_or_final_versio
Stable ferromagnetism in p-type carbon-doped ZnO nanoneedles
Author name used in this publication: C. S. Wei2009-2010 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
The clinical association of programmed cell death protein 4 (PDCD4) with solid tumors and its prognostic significance: a meta-analysis
published_or_final_versio
PI3K/mTORC2 regulates TGF-β/Activin signalling by modulating Smad2/3 activity via linker phosphorylation
Crosstalk between the phosphatidylinositol 3-kinase (PI3K) and the transforming growth factor-β signalling pathways play an important role in regulating many cellular functions. However, the molecular mechanisms underpinning this crosstalk remain unclear. Here, we report that PI3K signalling antagonizes the Activin-induced definitive endoderm (DE) differentiation of human embryonic stem cells by attenuating the duration of Smad2/3 activation via the mechanistic target of rapamycin complex 2 (mTORC2). Activation of mTORC2 regulates the phosphorylation of the Smad2/3-T220/T179 linker residue independent of Akt, CDK and Erk activity. This phosphorylation primes receptor-activated Smad2/3 for recruitment of the E3 ubiquitin ligase Nedd4L, which in turn leads to their degradation. Inhibition of PI3K/mTORC2 reduces this phosphorylation and increases the duration of Smad2/3 activity, promoting a more robust mesendoderm and endoderm differentiation. These findings present a new and direct crosstalk mechanism between these two pathways in which mTORC2 functions as a novel and critical mediator
Metallic 1T Phase, 3d1 Electronic Configuration and Charge Density Wave Order in Molecular Beam Epitaxy Grown Monolayer Vanadium Ditelluride.
We present a combined experimental and theoretical study of monolayer vanadium ditelluride, VTe2, grown on highly oriented pyrolytic graphite by molecular-beam epitaxy. Using various in situ microscopic and spectroscopic techniques, including scanning tunneling microscopy/spectroscopy, synchrotron X-ray and angle-resolved photoemission, and X-ray absorption, together with theoretical analysis by density functional theory calculations, we demonstrate direct evidence of the metallic 1T phase and 3d1 electronic configuration in monolayer VTe2 that also features a (4 × 4) charge density wave order at low temperatures. In contrast to previous theoretical predictions, our element-specific characterization by X-ray magnetic circular dichroism rules out a ferromagnetic order intrinsic to the monolayer. Our findings provide essential knowledge necessary for understanding this interesting yet less explored metallic monolayer in the emerging family of van der Waals magnets
MicroRNA 744-3p promotes MMP-9-mediated metastasis by simultaneously suppressing PDCD4 and PTEN in laryngeal squamous cell carcinoma
MicroRNA controls cancer invasion by governing the expression of gene regulating migration and invasion. Here, we reported a novel regulatory pathway controlled by miR-744-3p, which enhanced expression of matrix metallopeptidase 9 (MMP-9) in laryngeal squamous cell carcinoma (LSCC). We profiled the differential micoRNA expression pattern in LSCC cell lines and normal epithelial cultures derived from the head and neck mucosa using microRNA microarray. MiR-7-1-3p, miR-196a/b and miR-744-3p were expressed differentially in the LSCC cell lines. Subsequent validation using real-time PCR revealed that high miR-744-3p level was positively correlated with regional lymph node metastasis of LSCC. Real-time cellular kinetic analysis showed that suppressing miR-744-3p could inhibit migration and invasion of LSCC cell lines and reduce the number of lung metastatic nodules in nude mice modules. In silico analysis revealed that miR-744-3p targeted 2 distinct signaling cascades which eventually upregulated MMP-9 expression in LSCC. First, miR-744-3p could suppress programmed cell death 4 (PDCD4), a direct suppressor of NF-κB (p65). PDCD4 could also prevent AKT activation and suppress MMP-9 expression. Further, suppressing miR-744-3p expression could restore phosphatase and tensin homolog (PTEN) expression. PTEN could inhibit AKT activation and inhibit MMP-9 expression in LSCC cells. The results revealed that suppressing miR-744-3p was effective to inhibit LSCC metastasis by inactivating AKT/mTOR and NF-κB (p65) signaling cascade. Targeting miR-744-3p could be a valuable therapeutic intervention to suppress the aggressiveness of LSCC.published_or_final_versio
Correction to Metallic 1T Phase, 3d1 Electronic Configuration and Charge Density Wave Order in Molecular-Beam Epitaxy Grown Monolayer Vanadium Ditelluride.
It has been brought to our attention that a mistake exists in the author list. The author “Johnson Goh” in the original article should be “Kuan Eng Johnson Goh”. His primary corresponding email is [email protected]
A reliability-based approach for influence maximization using the evidence theory
The influence maximization is the problem of finding a set of social network
users, called influencers, that can trigger a large cascade of propagation.
Influencers are very beneficial to make a marketing campaign goes viral through
social networks for example. In this paper, we propose an influence measure
that combines many influence indicators. Besides, we consider the reliability
of each influence indicator and we present a distance-based process that allows
to estimate the reliability of each indicator. The proposed measure is defined
under the framework of the theory of belief functions. Furthermore, the
reliability-based influence measure is used with an influence maximization
model to select a set of users that are able to maximize the influence in the
network. Finally, we present a set of experiments on a dataset collected from
Twitter. These experiments show the performance of the proposed solution in
detecting social influencers with good quality.Comment: 14 pages, 8 figures, DaWak 2017 conferenc
Geometry and kinematics for a spherical-base integrated parallel mechanism
Parallel mechanisms, in general, have a rigid base and a moving platform connected by several limbs. For achieving higher mobility and dexterity, more degrees of freedom are introduced to the limbs. However, very few researchers focus on changing the design of the rigid base and making it foldable and reconfigurable to improve the performance of the mechanism. Inspired by manipulating an object with a metamorphic robotic hand, this paper presents for the first time a parallel mechanism with a reconfigurable base. This novel spherical-base integrated parallel mechanism has an enlarged workspace compared with traditional parallel manipulators. Evolution and structure of the proposed parallel mechanism is introduced and the geometric constraint of the mechanism is investigated based on mechanism decomposition. Further, kinematics of the proposed mechanism is reduced to the solution of a univariate polynomial of degree 8. Moreover, screw theory based Jacobian is presented followed by the velocity analysis of the mechanism
Quantitative model for inferring dynamic regulation of the tumour suppressor gene p53
Background: The availability of various "omics" datasets creates a prospect of performing the study of genome-wide genetic regulatory networks. However, one of the major challenges of using mathematical models to infer genetic regulation from microarray datasets is the lack of information for protein concentrations and activities. Most of the previous researches were based on an assumption that the mRNA levels of a gene are consistent with its protein activities, though it is not always the case. Therefore, a more sophisticated modelling framework together with the corresponding inference methods is needed to accurately estimate genetic regulation from "omics" datasets.
Results: This work developed a novel approach, which is based on a nonlinear mathematical model, to infer genetic regulation from microarray gene expression data. By using the p53 network as a test system, we used the nonlinear model to estimate the activities of transcription factor (TF) p53 from the expression levels of its target genes, and to identify the activation/inhibition status of p53 to its target genes. The predicted top 317 putative p53 target genes were supported by DNA sequence analysis. A comparison between our prediction and the other published predictions of p53 targets suggests that most of putative p53 targets may share a common depleted or enriched sequence signal on their upstream non-coding region.
Conclusions: The proposed quantitative model can not only be used to infer the regulatory relationship between TF and its down-stream genes, but also be applied to estimate the protein activities of TF from the expression levels of its target genes
- …