4,291 research outputs found

    Super-reflection and Cloaking Based on Zero Index Metamaterial

    Full text link
    A zero index metamaterial (ZIM) can be utilized to block wave (super-reflection) or conceal objects completely (cloaking). The "super-reflection" device is realized by a ZIM with a perfect electric (magnetic) conductor inclusion of arbitrary shape and size for a transverse electric (magnetic) incident wave. In contrast, a ZIM with a perfect magnetic (electric) conductor inclusion for a transverse electric (magnetic) incident wave can be used to conceal objects of arbitrary shape. The underlying physics here is determined by the intrinsic properties of the ZIM

    Robust Sound Event Classification using Deep Neural Networks

    Get PDF
    The automatic recognition of sound events by computers is an important aspect of emerging applications such as automated surveillance, machine hearing and auditory scene understanding. Recent advances in machine learning, as well as in computational models of the human auditory system, have contributed to advances in this increasingly popular research field. Robust sound event classification, the ability to recognise sounds under real-world noisy conditions, is an especially challenging task. Classification methods translated from the speech recognition domain, using features such as mel-frequency cepstral coefficients, have been shown to perform reasonably well for the sound event classification task, although spectrogram-based or auditory image analysis techniques reportedly achieve superior performance in noise. This paper outlines a sound event classification framework that compares auditory image front end features with spectrogram image-based front end features, using support vector machine and deep neural network classifiers. Performance is evaluated on a standard robust classification task in different levels of corrupting noise, and with several system enhancements, and shown to compare very well with current state-of-the-art classification techniques

    The Wigner solution of quark gap equation at nonzero current quark mass and partial restoration of chiral symmetry at finite chemical potential

    Full text link
    According to the generally accepted phase diagram of QCD, at low temperature and high baryon number density the chiral phase transition of QCD is of first order and the co-existence of the Nambu-Goldstone phase and the Wigner phase should appear. This is in conflict with the usual claim that the quark gap equation has no Wigner solution in the case of nonzero current quark mass. In this paper we analyze the reason why the Wigner solution does not exist in the usual treatment and try to propose a new approach to discuss this question. As a first step, we adopt a modified Nambu-Jona-Lasinio (NJL) model to study the Wigner solution at finite current quark mass. We then generalize this approach to the case of finite chemical potential and discuss partial restoration of chiral symmetry at finite chemical potential and compare our results with those in the normal NJL model.Comment: 7 pages, 5 figures, and 1 table, discussion at finite chemical potential adde
    corecore