87,215 research outputs found

    Diverse Temporal Properties of GRB Afterglow

    Full text link
    The detection of delayed X-ray, optical and radio emission, "afterglow", associated with γ\gamma-ray bursts (GRBs) is consistent with fireball models, where the emission are produced by relativistic expanding blast wave, driven by expanding fireball at cosmogical distances. The emission mechanisms of GRB afterglow have been discussed by many authors and synchrotron radiation is believed to be the main mechanism. The observations show that the optical light curves of two observed gamma-ray bursts, GRB970228 and GRB GRB970508, can be described by a simple power law, which seems to support the synchrotron radiation explanation. However, here we shall show that under some circumstances, the inverse Compton scattering (ICS) may play an important role in emission spectrum and this may influence the temporal properties of GRB afterglow. We expect that the light curves of GRB afterglow may consist of multi-components, which depends on the fireball parameters.Comment: Latex, no figures, minor correctio

    Probing the plateau-insulator quantum phase transition in the quantum Hall regime

    Get PDF
    We report quantum Hall experiments on the plateau-insulator transition in a low mobility In_{.53} Ga_{.47} As/InP heterostructure. The data for the longitudinal resistance \rho_{xx} follow an exponential law and we extract a critical exponent \kappa= .55 \pm .05 which is slightly different from the established value \kappa = .42 \pm .04 for the plateau transitions. Upon correction for inhomogeneity effects, which cause the critical conductance \sigma_{xx}^* to depend marginally on temperature, our data indicate that the plateau-plateau and plateau- insulator transitions are in the same universality class.Comment: 4 pages, 4 figures (.eps

    Effect of atmospheric turbulence on propagation properties of optical vortices formed by using coherent laser beam arrays

    Full text link
    In this paper, we consider the effect of the atmospheric turbulence on the propagation of optical vertex formed from the radial coherent laser beam array, with the initially well-defined phase distribution. The propagation formula of the radial coherent laser array passing through the turbulent atmosphere is analytically derived by using the extended Huygens-Fresnel diffraction integral. Based on the derived formula, the effect of the atmospheric turbulence on the propagation properties of such laser arrays has been studied in great detail. Our main results show that the atmospheric turbulence may result in the prohibition of the formation of the optical vortex or the disappearance of the formed optical vortex, which are very different from that in the free space. The formed optical vortex with the higher topological charge may propagate over a much longer distance in the moderate or weak turbulent atmosphere. After the sufficient long-distance atmospheric propagation, all the output beams (even with initially different phase distributions) finally lose the vortex property and gradually become the Gaussian-shaped beams, and in this case the output beams actually become incoherent light fields due to the decoherence effect of the turbulent atmosphere.Comment: 10 pages, 5 figure

    Electronic Interface Reconstruction at Polar-Nonpolar Mott Insulator Heterojunctions

    Full text link
    We report on a theoretical study of the electronic interface reconstruction (EIR) induced by polarity discontinuity at a heterojunction between a polar and a nonpolar Mott insulators, and of the two-dimensional strongly-correlated electron systems (2DSCESs) which accompany the reconstruction. We derive an expression for the minimum number of polar layers required to drive the EIR, and discuss key parameters of the heterojunction system which control 2DSCES properties. The role of strong correlations in enhancing confinement at the interface is emphasized.Comment: 7 pages, 6 figures, some typos correcte

    Composite Geometric Phase for Multipartite Entangled States

    Get PDF
    When an entangled state evolves under local unitaries, the entanglement in the state remains fixed. Here we show the dynamical phase acquired by an entangled state in such a scenario can always be understood as the sum of the dynamical phases of its subsystems. In contrast, the equivalent statement for the geometric phase is not generally true unless the state is separable. For an entangled state an additional term is present, the mutual geometric phase, that measures the change the additional correlations present in the entangled state make to the geometry of the state space. For NN qubit states we find this change can be explained solely by classical correlations for states with a Schmidt decomposition and solely by quantum correlations for W states.Comment: 4 pages, 1 figure, improved presentation, results and conclusions unchanged from v1. Accepted for publication in PR

    Nonlinear lift and pressure distribution of slender conical bodies with strakes at low speeds

    Get PDF
    Nonlinear lift and pressure distribution of slender conical bodies with strakes at low spee

    The ordered K-theory of a full extension

    Get PDF
    Let A be a C*-algebra with real rank zero which has the stable weak cancellation property. Let I be an ideal of A such that I is stable and satisfies the corona factorization property. We prove that 0->I->A->A/I->0 is a full extension if and only if the extension is stenotic and K-lexicographic. As an immediate application, we extend the classification result for graph C*-algebras obtained by Tomforde and the first named author to the general non-unital case. In combination with recent results by Katsura, Tomforde, West and the first author, our result may also be used to give a purely K-theoretical description of when an essential extension of two simple and stable graph C*-algebras is again a graph C*-algebra.Comment: Version IV: No changes to the text. We only report that Theorem 4.9 is not correct as stated. See arXiv:1505.05951 for more details. Since Theorem 4.9 is an application to the main results of the paper, the main results of this paper are not affected by the error. Version III comments: Some typos and errors corrected. Some references adde

    Dephasing time in graphene due to interaction with flexural phonons

    Get PDF
    We investigate decoherence of an electron in graphene caused by electron-flexural phonon interaction. We find out that flexural phonons can produce dephasing rate comparable to the electron-electron one. The problem appears to be quite special because there is a large interval of temperature where the dephasing induced by phonons can not be obtain using the golden rule. We evaluate this rate for a wide range of density (nn) and temperature (TT) and determine several asymptotic regions with temperature dependence crossing over from τϕ−1∼T2\tau_{\phi }^{-1}\sim T^{2} to τϕ−1∼T\tau_{\phi}^{-1}\sim T when temperature increases. We also find τϕ−1\tau_{\phi}^{-1} to be a non-monotonous function of nn. These distinctive features of the new contribution can provide an effective way to identify flexural phonons in graphene through the electronic transport by measuring the weak localization corrections in magnetoresistance.Comment: 13 pages, 8 figure
    • …
    corecore