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We investigate decoherence of an electron in graphene caused by electron-flexural phonon inter-
action. We find out that flexural phonons can produce dephasing rate comparable to the electron-
electron one. The problem appears to be quite special because there is a large interval of temperature
where the dephasing induced by phonons can not be obtain using the golden rule. We evaluate this
rate for a wide range of density (n) and temperature (T ) and determine several asymptotic regions
with temperature dependence crossing over from τ−1

φ ∼ T 2 to τ−1
φ ∼ T when temperature increases.

We also find τ−1
φ to be a non-monotonous function of n. These distinctive features of the new contri-

bution can provide an effective way to identify flexural phonons in graphene through the electronic
transport by measuring the weak localization corrections in magnetoresistance.

PACS numbers: 72.10.-d, 72.10.Di, 72.80.Vp

Introduction. The transport properties of graphene
have attracted much attention [1] since the first discov-
ery of this fascinating material [2]. It is promising for
various applications due to its high charge mobility and
unique heat conductivity. Theoretically, it was realized
long ago [3–5] that these transport properties of free-
standing (suspended) graphene are strongly influenced
by flexural (out-of-plane) vibrational modes that deform
the graphene sheet. From the experimental point of view,
the effect of flexural phonons (FPs) was clearly observed
in heat transport [6, 7]. However, it is a more challeng-
ing task to identify the effect of flexural phonons in elec-
tronic transport [8, 9]. This is because the contribution
of electron-phonon interactions to momentum relaxation
remains small even at high temperatures, with the main
source of the relaxation being elastic impurities [10].

The dephasing rate τ−1
φ , on the other hand, is a more

suitable quantity for studying FPs, since static impuri-
ties do not cause dephasing. Usually, electron-electron
interactions, [11–15] are considered the primary mecha-
nism for dephasing. In this letter we discuss dephasing
caused by the electron-flexural phonon (el-FP) interac-
tion in graphene. It is the softness of the flexural mode
and the coupling of an electron to two FPs simultane-
ously (see Fig. 1 for illustration) that make the contri-
bution of FPs to τ−1

φ significant in a suspended sample,
and at large enough densities comparable with the one
caused by the electron-electron interaction. Because of
the quadratic spectrum of FPs, ωk = αk2, they are much
more populated as compared with in-plane phonons. In
addition, the coupling to two FPs considerably increases
the phase space available for inelastic processes as com-
pared to the interaction with a single phonon. The point
is that in graphene the Fermi momentum, kF , is relatively
small. As a result, the interaction of a single phonon with
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Figure 1. On the left: scheme of the el-FP interaction process,
where the solid line represents an electron, and the wavy lines
represent FPs. On the right: FPs can have momenta p, q
much larger than the transferred momentum Q. Under the
conditions discussed in the paper, the scattering process is
considered as semi-elastic.

electrons is determined by the Bloch-Grüneisen temper-
ature, TBG ∼ ω2kF , rather than the temperature, when
T � TBG [16]. In such a case, one needs to exploit other
scattering mechanisms to overcome the limitations in-
duced by the smallness of kF [17]. In the case of el-FP in-
teraction, coupling to two phonons radically changes the
situation. Now only the transferred momentum should
be small, while individually a FP may have a momentum
much larger than kF , up to the thermal momentum qT .

Still, as we shall demonstrate, the problem of dephas-
ing due to the el-FP interaction appears to be quite spe-
cial, because the softness of FPs, i.e. unique smallness of
TBG, leads to the existence of a temperature range where
dephasing rate cannot be obtained using the golden rule
(GR). Rather, both the self-energy and the vertex pro-
cesses [18] should be treated simultaneously. This results
in a transition from τ−1

φ ∼ T 2 to T with increasing tem-
perature for the dephasing rate induced by FPs.

The electron-flexural phonon interaction. Lattice dy-
namics of the single-layer graphene can be described
in terms of the displacement vector u = (ux, uy, h) [19].
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Here ux,y describe the in-plane modes, while the out-of-
plane displacement h describes the flexural mode. The
displacement vector leads to a non-linear strain tensor
uij = 1

2 (∂iuj + ∂jui + ∂ih∂jh) , where (i, j) = (x, y) are
spatial indices. The lattice modes interact with elec-
trons through emergent scalar and vector potential fields
[20, 21]:

ϕ = g1 (uxx + uyy) ,

Aα = sαg2/vF (uxx − uyy,−2uxy) , (1)

where g1 = 30eV, g2 = 7.5eV [9] and vF is the Fermi
velocity. Index α = K,K ′ describes two valleys of the
conducting electron band, and factor sK/K

′
= ±1 reflects

the fact that the emergent vector potential Aα respects
the time reversal symmetry.

Thermal fluctuations of the lattice produce variations
in the potentials. Averaging over lattice vibrations one
finds the correlation functions of the potentials as

〈ϕ (Q,Ω)ϕ (−Q,−Ω)〉 = φ (Q,Ω) ,
〈
Aαi (Q,Ω)Aβj (−Q,−Ω)

〉
= sαsβAij (Q,Ω) . (2)

To proceed, we introduce the correlation function for FP

〈h (k, ω)h (−k,−ω)〉 ≡ H (k) 2πδ (ω − ωk) , (3)

where H (k) = n(ωk)
ρωk

. In this equation, n (ω) is the
Planck distribution function and ρ is the mass density
of the graphene sheet. One can propose the following
form of the spectrum of the flexural phonon:

ωk = αk2Θ (k) , Θ (k) =
√

1 + Z−1 (qc/k)
η
, (4)

where Θ (k) describes a transition from the bare spec-
trum at high momentum to the renormalized spectrum
∼ k2−η/2 in the low momentum limit. At k < qc (T ) =√
T∆c

vF
the quadratic spectrum for the flexural mode

ceases to work due to anharmonicity. Here ∆c ≈ 18.7eV
[5] reflects the energy scale of anharmonicity. The an-
harmonicity is related to the h4-vertex, arising as a re-
sult of integrating out fast u-modes, which are coupled
to h-mode [22]. Below we will exploit the value Z ∼ 2,
and take η ≈ 0.8 from the numerical solution of the self-
consistent screening approximation theory [23, 24].

We consider graphene away from the Dirac point at
chemical potential µ � T . Besides kF , the relevant
momentum scales in the problem are: thermal mo-
mentum qT =

√
T/α ≈ 0.05

√
T [K]/Å, and qc(T ) ≈

0.01
√
T [K]/ Å which signals the transition to the renor-

malized FP spectrum. From now on, we will concentrate
on the realistic situation from the experimental view-
point: kF � qT , i.e., T � TBG. The Bloch-Grüneisen
temperature TBG = ω2kF ≈ 0.4Θ (2kF )nK, where n is
the electronic density measured in units of 1012cm−2.

Note TBG is extraordinarily small for all relevant den-
sities. As we have already emphasized, see Fig. 1, the
momentum transfer in the el-FP interaction is limited
by 2kF . Nevertheless, the extended structure of the cor-
relation functions φ (Q,Ω) and Aij (Q,Ω) enables elec-
trons to have energy transfer exceeding the phonon en-
ergy ω2kF .

Main tool to probe electronic coherence is magnetore-
sistance [25], which gives a direct access to the weak lo-
calization corrections to conductivity, controlled by the
dephasing rate τ−1

φ . The weak localization correction to
conductivity in graphene can be written as [26, 27]

∆σ = −2e2D

π

∑

l

∫
dtCl (−t/2, t/2) , (5)

where l sums over four Cooperon channels relevant for the
magnetoresistance. Physically, Cl (−t/2, t/2) represents
the interference of a pair of time reversed trajectories in
the channel l that start at −t/2 and return to the ini-
tial point at t/2. More generally, the Cooperon matrix
Cl1l2s1s2 is labelled by two isospin numbers s1,2 and two
pseudospin numbers l1,2. This matrix is diagonal in the
pseudospin space even in the presence of interactions that
preserve sublattice and valley indices. The Cooperon
channels relevant for magnetoresistance are the isospin
singlets, Cl ≡ Cll00 (l = 0, x, y, z), that do not have gaps
comparable with τ−1, the elastic scattering rate due to
impurities. Therefore, we restrict ourselves to this sub-
space.
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Figure 2. Diagrammatic representation of (a) the self-energy
and (b) the vertex FP-contribution to the Cooperon; see also
Fig. 2c in [28].

To include el-FP interaction into the Cooperon, one
can write down a Bethe-Salpeter equation for a particular
Cooperon channel Cl, see Fig. 2. In the following we
will not solve the equation exactly, but instead, we will
estimate the upper bound of the Cooperon decay rate
[29, 30]. We start by writing down an ansatz that reads
as [18]

Cl (t1, t2) = Cl0 (t1 − t2) e−F
l(t1,t2). (6)
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Here Cl0 (t) is the diffusion propagator describing the bare
Cooperon, and F l (t1, t2) is a decay function characteriz-
ing the effect of the el-FP interaction [28].

Dephasing due to scalar potential fluctuations. For the
scalar potential correlation function one obtains:

φ (Q,Ω) =
1

8
g2

1 (Q)

∫ (
d2p

) (
d2q
)

[p · q]
2

×H (p)H (q) δp,q (Ω,Q) , (7)

where δp,q (Ω,Q) ≡ ∑
± (2π)

3
δ (Ω± ωp ± ωq)×

δ (Q− p− q), and ωp,q are given by Eq. (4). Here
summation includes four different processes of emis-
sion/absorption of two FPs by an electron. The screened
coupling constant g1 (Q) = g1

Q
Q+κ , where κ = geNkF ,

N = 4 is the spin-valley degeneracy in graphene, and
ge ∼ 1 describes the renormalized Coulomb interaction
[31]. Since each time an electron is coupled to two
flexural phonons, φ describes a phonon loop and, there-
fore, in the momentum-frequency domain φ (Q,Ω) has a
extended support rather than a δ-function peak. As a
result, the decay function for the scalar potential Fφ (t)
(which is the same for all channels) can be expressed as
a convolution of the three factors [28]: i) the correlation
function φ (Q,Ω), ii) function Bφ (Q), describing the
ballistic electron’s motion, and iii) factor Cφ (Ω, t),
reflecting the relation between the self-energy and vertex
diagrams:

Fφ (t) = t

∫
(dQ) (dΩ)φ (Q,Ω)Bφ (Q) Cφ (Ω, t) . (8)

Here,

Bφ (Q) =
2

vFQ

(
1− (Q/2kF )

2
)1/2

θ (2kF −Q) , (9)

where the Heaviside theta function θ (2kF −Q) restricts
momentum that can be exchanged between FPs and elec-
trons. The factor Cφ (Ω, t) is equal to

Cφ (Ω, t) = 1− sin Ωt

Ωt
, (10)

and it describes the balance between the self-energy and
vertex diagrams on Fig. 2. Cφ is sensitive to dynamic
aspect of the scattering event and, because of this, alters
temperature dependence of τ−1

φ .

The dephasing rate τ−1
φ is defined according to

Fφ (τφ) = 1. The decay function can be most conve-
niently expressed as

Fφ (t) = c2φtTf (T , ξ) T
µ
, (11)

where cφ = g1/ρα
2

2πgeN
∼ 1.2 is dimensionless coupling con-

stant and f is a dimensionless function of two parame-
ters: T = αk2

F t and ξ = Z−1/ηqc/kF [28]. Parameter ξ
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Figure 3. Phase diagram of the dephasing rate due to FPs
with scalar coupling. The blue and black lines divide the
whole (T − µ) plane into three regions, see the text for ex-
planations. The blue line coincides with the maximum of the
dephasing rate as a function of chemical potential at a fixed
temperature, see Fig. (4). The red dashed line representing a
fragment of ξ = 1 is shown here for orientation. The inset is
a zoom in of the intersection area of the blue and black lines
plotted as a function of the electronic density.

originates from the renormalization of the FP spectrum
described by Θ in Eq. (4); Θ (kF ) =

√
1 + ξη. At small T

the function f is linear in T , and it saturates at T � 1.

The results are illustrated with the help of Fig. 3,
where regions I, II and III with a different dephasing
rate behavior are indicated in the (T − µ) plane. The
regions are divided in accord with the importance of the
renormalized spectrum of the FP and the relative contri-
butions of the self-energy and vertex diagrams. In region
I, which is on the left of the black line (i.e., at small
densities), the characteristic momenta of p and q in Eq.
(7) do not exceed qc. Therefore, the renormalization of
the FP spectrum is important, and ωq ∼ q2−η/2 should
be used [32]. In region II, since the characteristic mo-
menta of the FPs are larger than qc, it suffices to use
the quadratic spectrum for FPs. In region III, which is
in the bottom part below the blue line, the dephasing
time is long and only the self-energy diagram is impor-
tant. Hence, the factor Cφ reduces to 1, and dephasing
rate coincides with the out-scattering rate, τ−1

out, obtained
from the golden rule [5]. (In this calculation, qc just pro-
vides an infrared cut-off.) Above the blue line, in regions
I and II, both the self-energy and vertical diagrams are
relevant, and the factor Cφ (t) is important; see also [33].
Due to the two-phonon structure of the correlation func-
tion of the FP pairs participating in the inelastic process,
the influence of this factor on the dephasing rate is rather
non-trivial, so that one cannot expand Cφ (t).

In Fig. 3, the blue and black lines have been found by
matching the asymptotic behavior [28] of the dephasing
rates deep in regions I, II and III. We introduce (µ0, T0) ,
the values of the crossing point of the blue and black
lines as characteristic scales: µ0 ∼ γ

c2φ
∆c and T0 ∼ γ

c2φ
µ0.

Here, we have introduced γ = α∆c

v2F
∼ 0.02, which is a
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parameter describing the adiabaticity of the el-FP inter-
action. Under a given choice of parameters, it can be
found numerically that µ0 ≈ 0.02eV and T0 ≈ 0.6K. The
dephasing rate in different regions can be expressed as

τ−1
φ (T ) = γT ×





0.48 (µ/µ0)
4−η
8−5η I

0.18
√
µ/µ0 II

0.24T/T0

µ/µ0
log ξ−1 III.

(12)

These expressions are obtained using asymptotic behav-
ior of the function f in Eq. (11) and, therefore, are only
applicable far away from the borderlines. At low enough
temperatures, Cφ (t) = 1 and the function f (T , ξ) is in-
dependent of T . Hence, τ−1

φ ∼ T 2 in region III, which
is a GR result. At high temperatures the phonons con-
tributing to the electronic dephasing become quasi-static
and, consequently, the dephasing rate is smaller than the
out-scattering rate τ−1

out. Unlike region III, in regions I
and II the dephasing rate is determined by a non-GR ex-
pression, and is proportional to temperature, irrespective
of η. The existence of the linear in T regime is the main
result of our paper.

By comparing the rates in regions II and III, one may
conclude that there should be a maximum in the dephas-
ing rate as a function of µ. Indeed, as it is illustrated
by Fig. 4 such a maximum exists. The line indicating
the maximum essentially overlaps with the borderline be-
tween the regions I, II and the region III, which is illus-
trated by the blue line in Fig. 3.

008.0

)eV(µ

004.0

012.0

05.0 15.0 25.0 35.0

)1−ps(φ
1−τ

Figure 4. Dephasing rate as a function of the chemical poten-
tial at different temperatures. From top to buttom: T=15K,
10K, 5K.

Dephasing due to vector potential fluctuations. Un-
like the scalar potential, the dephasing rates induced by
vector potential are different for different channels ow-
ing to the factor CAl (Ω, t) = 1 + sl

sinωt
ωt , where sl = −1

for the intervalley Cooperons (l = 0, z) and sl = 1 for
the intravalley Cooperons (l = x, y). For the intervalley
channels, the only relevant for the magnetoresistance at
weak fields, the dephasing rate produced by the vector
potential coupling is quite similar to its scalar counter-
part, Eq. (12), with obvious modifications due to the
change in the coupling constant and absence of screening
for the vector potential [28].

Discussion. We have analysed the dephasing rate in-
duced by FPs in graphene, and evaluated it for a wide
range of n and T (see Fig. 3.) We determined several
asymptotic regions with temperature dependence evolv-
ing from τ−1

φ ∼ T 2 to τ−1
φ ∼ T when temperature in-

creases. (See Fig. 4 in [28] for an illustration of the tem-
perature dependence of the dephasing rate.) The tran-
sition to linear behavior in T is related to the fact that
at high temperatures phonons become slow on the time-
scale of τφ.

The measured dephasing rate in graphene is usually
compared to the contribution induced by the electron-
electron interaction, τ−1

ee , which is linear in T for T <
1/τtr [11]. However, the observed rate [12–14], when it
is linear in T , always exceeds the theoretical estimation.
In view of the linear dependence on T of the FP’s con-
tribution to dephasing, it is reasonable to compare its
value with τ−1

ee . In principle, it is a competition between
two mechanisms, each determined by a small parameter:
the adiabatic parameter γ and sheet resistance ρ� mea-
sured in units of the quantum resistance. We compare
the dephasing rates at density n = 1012cm−2 when the
sheet resistance ≈ 0.5kΩ. Under these conditions, both
parameters γ and ρ� are of the same value. Combin-
ing the contributions arising from the scalar and vector
potentials, we obtain τ−1

FP /τ
−1
ee ≈ 0.2.

The in-plane phonons generate a dephasing τ−1
in that at

T < T inBG is negligible compared with τ−1
FP , while at T >

T inBG the rate τ−1
in ∼ T is comparable with τ−1

FP . (Note
that for in-plane phonons, a region of non-GR dephasing
rate, analogous to region II, develops at temperatures
& µ that is too high to be relevant.) It is important
that each of the three rates τ−1

ee , τ−1
FP , and τ−1

in , has a
distinct dependence on the chemical potential. While
τ−1
ee decreases with density, τ−1

FP ∝ µ1/2 and τ−1
in ∝ µ.

This opens a way to identify each of these mechanisms
by studying the magnetoresistance as a function of the
chemical potential.

In our consideration, we had in mind suspended
graphene. However, our result may also be relevant for
supported samples so long as they are coupled to the
substrate by weak Van der Waals forces [34]. One may
expect that such a weak coupling does not provide an
essential change in the phonon spectrum. Indeed, it is
known that the phonon spectrum in graphene [35] and
graphite [36] are practically identical for the correspond-
ing branches. FPs in supported samples have been dis-
cussed recently in connection with the heat transport
measurements in Refs. [6, 7]. Until now flexural phonons
have been a delicate object to detect in electronic trans-
port. We propose here to observe them through weak-
localization measurements.
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DIAGRAMMATIC CALCULATION OF THE DECAY FUNCTION

The decay function F l defined in Eq. (6m) (’m’ refers to the main text) can be illustrated with the following
diagram:

Sl

-
-t/2     t/2

FIG. 1: Diagrammatic representation of the decay function F (t). Here Σl = Σselfl + Σvertl .

To the lowest order in the interaction propagators, the expression for F l can be obtained as [1]

F l (t1, t2) ' − Cl1 (t1, t2)

Cl0 (t1 − t2)
, (1)

where Cl1 is the first order correction to the Cooperon in terms of the interactions propagators. We perform the

diagrammatic calculation with the use of the matrix Greens function G
R/A
αβ (ε,p) = 1

2

δαβ+(Σ·p̂)αβ
ε±i/(2τ)−vF p . Here we have

introduced iso-pseudospin basis [2], spanned by two sets of mutually commuting matrices, isospin-Σ and pseudospin-
Λ:

Σ0,Σx = Πz ⊗ σx,Σy = Πz ⊗ σy,Σz = Π0 ⊗ σz,
Λ0,Λx = Πx ⊗ σz,Λy = Πy ⊗ σz,Λz = Πz ⊗ σ0, (2)

where Σ0,Λ0 are unit matrices and Πx,y,z and σx,y,z are Pauli matrices acting on valley and sublattice spaces re-
spectively. For each channel, the contribution of the el-FP interaction can be separated into the scalar and vector
potential ones. Thus, one can write F l = F lφ + F lA. We concentrate first on dephasing caused by the scalar potential
fluctuation φ (Q,Ω). The calculation for the vector potential contribution goes along the similar lines, and results are
presented in the end of this Section. Due to the interaction propagators, one can write [1]

Cl1 (t1, t2) =

∫
(dQ) (dΩ) (dq̃) (dω̃) e−iω̃t12 [Cl0 (q̃, ω̃) Σl,selfQ,q̃ (ω̃,Ω)Cl0 (q̃, ω̃)

+ eiΩτ12Cl0 (q̃, ω̃ − Ω) Σl,vertQ,q̃ (ω̃,Ω)Cl0 (q̃, ω̃ + Ω)], (3)

ar
X

iv
:1

50
5.

04
83

4v
1 

 [
co

nd
-m

at
.m

es
-h

al
l]

  1
8 

M
ay

 2
01

5



2

where t12 = t1 − t2 and τ12 = t1 + t2. Here, the effect of the interaction is separated into the self-energy and vertex
(vertical) contributions, denoted as Σself/vert; see Fig. 2. The self-energy and vertex contribution of the channel l are

defined in the iso-pseudospin basis via Σl,self/vert ≡ (ΣyΛyΛl)αβ Σ
self/vert,
αβ;γδ (ΣyΛlΛy)δγ (summation for Greek letters

is implied; indices φ (A) are omitted). Here, the self-energy contribution, see Fig. 2(a), can be written as

=τΣself
αβ;γδ

α β

γ δ

E+, p+

R R R

A

E−, p−

E+ − Ω/2, p+

R

A

R

A

E− +Ω/2, p−

E+ +Ω/2, p+ +Q

E− − Ω/2, p− −Q

α

γ

β

δ

=τΣvert
αβ;γδ

E+ −Ω , p+−Q

1/πν0τ

=

=

g1(Q)

= −i/2DK(Ω, Q)

R/A = G
R/A
αβ (E, p)E, pα β

(a)

(b)

(c)

FIG. 2: Diagrammatic representation of (a) the self-energy contribution and (b) the vertex contribution. (c) Diagrammatic
dictionary for the various objects involved: E± = µ± ω̃/2 and p± = kF ± q̃/2; ν0 is the density of states at Fermi energy, and
g1 (Q) is the coupling constant with screening included.

τΣself,φαβ;γδ, (q̃, Q, ω̃,Ω) = −g (Q)
2

πν0τ

∫ (
d2p
)(
− i

2
DK (Q,Ω)

)
×

{
[
GR

(
p+, E+

)
GR

(
p+ −Q,E+ − Ω

)
GR

(
p+, E+

)]
αβ
GA

(
p−, E−

)
γδ

+GR
(
p+, E+

)
αβ

[
GA

(
p−, E−

)
GA

(
p− −Q,E− − Ω

)
GA

(
p−, E−

)]
γδ
}, (4)

where E± = µ± ω̃/2, p± = kF ± q̃/2. Note that arguments q̃ and ω̃ are related to the propagation of the Cooperon,
while Q and Ω describe the interactions with FPs causing the dephasing. The vertex contribution, see Fig. 2(b), is

τΣvert,φαβ;γδ (q̃, Q, ω̃,Ω) = −g (Q)
2

πν0τ

∫ (
d2p
)(
− i

2
DK (Q,Ω)

)
×

[
GR

(
p+, ε+ − Ω

)
GR

(
p+ +Q, ε+

)]
αβ

[
GA

(
p−, ε− + Ω

)
GA

(
p− −Q, ε−

)]
γδ
, (5)

where ε± = E±±Ω/2. Due to the softness of FPs, the integrals in Eq. (3) converge at small frequencies Ω� T . Note
that the assumption that Ω � T depends crucially on the fact that τ−1

φ � T which has been checked a posteriori.
Therefore, when calculating the effect of interaction on the Cooperon propagators, one may take only the classical
(Keldysh) component of the interaction, DK

φ (Q,Ω) = −2iφ (Q,Ω), and send n (ωk) in H (k) to its classical limit, T
ωk
.

If the full quantum problem is considered, one needs to use 1
sinh(ωk/T ) , in order to incorporate Pauli principle due the

presence of other electrons [3]. This leads to the same result for T � ωk, but ensures that quantum fluctuations do
not lead to dephasing at zero temperature.

In Eq. (3), the Cooperon variables (q̃, ω̃) are small comparing to the electronic scales determining the el-FP
interaction process, i.e., q̃ � kF and ω̃ � µ. Therefore, one can drop out (q̃, ω̃) dependences from the interaction
propagators Σ. Furthermore, as far as T � TBG, the typical momentum transfer Q ∼ 2kF � 1/vF τ . Therefore,
dephasing can also be calculated assuming that electron’s motion during the interaction event is ballistic. After a
simple calculation, one concludes for scalar potential

Σl,selfφ = −Σl,vertφ = Σφ (Q,Ω) , (6)
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where Σφ (Q,Ω) ≡ φ (Q,Ω)Bφ (Q). Here φ (Q,Ω) is defined in Eq. (7m), and Bφ (Q) is defined in Eq. (9m). Plugging
these results back to Eq. (1) leads to Eq. (8m).

In the case of vector potential coupling, one calculates a diagram similar to that in Fig. 2, and gets

Σl,selfA = slΣ
l,vert
A = ΣijA (Q,Ω) δijT (Q) , (7)

where δijT (Q) = δij −QiQj/Q2 and ΣijA (Q,Ω) = v2
FAij (Q,Ω)BA (Q) . Here, the vector potential correlation function

Aij (Q,Ω) =
n̂in̂j

8
(g2/vF )

2
∫ (

d2p
) (
d2q
)
p2q2

×H (p)H (q) δp,q (Ω,Q) , (8)

where δp,q (Ω,Q) =
∑
± (2π)

3
δ (Ω± ωp ± ωq) δ (Q− p− q) and the summation includes four different processes of

emission/absorption of two FPs by an electron. Also, the factor describing the ballistic motion of the electrons

BA (Q) =
2

vFQ

(
1− (Q/2kF )

2
)−1/2

θ (2kF −Q) . (9)

The corresponding decay function can be rendered as (compare with Eq. (8m))

F lA (t) = t

∫
(dQ) (dΩ) v2

FAij (Q,Ω) δijT (Q)BA (Q) CAl (Ω, t) , (10)

where

CAl (Ω, t) = 1 + sl
sin Ωt

Ωt
, (11)

The intervalley Cooperons are coupled to the vector potential field of the opposite signs. Thus, sl = ±1 for intra-
/intervalley Cooperons. Further on, one can resolve the transverse delta function δijT and get

F lA (t) = t

∫
sin3 Q̂ (dQ) (dΩ)A (Q,Ω)BA (Q) CAl (Ω, t) , (12)

where

A (Q,Ω) =
g2

2

8

∫ (
d2p

) (
d2q
)
p2q2H (p)H (q) δp,q (Ω,Q) . (13)

EVALUATION OF THE DECAY FUNCTION

Scalar potential coupling

Let us now evaluate the integral in Eq. (8m) explicitly. It is convenient to use the time representation for the
energy delta-function:

∑

±
(2π) δ (Ω± ωp ± ωq) = 4

∫
dτ cos (ωpτ) cos (ωqτ) exp [−iΩτ ] . (14)

After this, one can integrate Eq. (8m) in frequency Ω, using

∫
(dΩ) e−iΩτ

(
1− sin Ωt

Ωt

)
=

1

t
Ξ− (τ/t) , (15)

where

Ξ± (s) ≡ δ (s)± 1

2
θ (1− |s|) . (16)
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The next step is to make the integral dimensionless by introducing τ = st and dimensionless 2D vectors
x,y, z = p/kF ,q/kF ,Q/kF . Using the expression for H (q) in the classical limit, H (q) = T

ρω2
q

(ωq is defined in

Eq. (4m)), we obtain the decay function as given in Eq. (11m)

Fφ (t) = c2φtTfφ

(
αk2

F t, Z
−1/ηqc/kF

) T
µ
. (17)

Here,

fφ (T , ξ) = 4π2

∫
(2π)

2
(dz) (dx) (dy) δ (z− x− y)S (z)

(x · y)
2

x4y4

∫
Ξ− (s) ds

cos
(
T sx2Θξ (x)

)
cos
(
T sy2Θξ (y)

)

Θ2
ξ (x) Θ2

ξ (y)

(18)

with T = αk2
F t, ξ = Z−1/ηqc/kF , Θξ (x) =

√
1 + (x/ξ)

−η
, and

Sφ (z) =

(
z

1 + z/ (geN)

)2√
1− (z/2)

2
θ (2− z) , (19)

which is the product of the screening and chiral factors. Here N = 4 is the spin-valley degeneracy in graphene, and
ge describes the renormalized Coulomb interaction.

To proceed, it is convenient to make some transformations in Eq. (18). First, we integrate out s exactly, using the
relation

∫
Ξ± (s) ds cos (sa) cos (sb) = Ξ± (a, b) , (20)

with

Ξ± [a, b] = 1± a sin a cos b− b sin b cos a

a2 − b2 . (21)

This gives

fφ (T , ξ) = (2π)
4
∫

(dz) (dx) (dy) δ (z− x− y)Sφ (z)
(x · y)

2

x4y4

Ξ−
[
T Θξ (x)x2s, T Θξ (y) y2s

]

Θ2
ξ (x) Θ2

ξ (y)
. (22)

The final step is to resolve the delta-function in the above expression for y which yields

y =
√
z2 + x2 − 2zx cosψ, (23)

where ψ is the angle between z and x. As a result, one finally obtains

fφ (T , ξ) =

∫ 2

0

dzSφ (z)

∫ ∞

0

dx

∫ 2π

0

dψ

2π

(z cosψ − x)
2

xy4

Ξ−
[
T Θξ (x)x2, T Θξ (y) y2

]

Θ2
ξ (x) Θ2

ξ (y)
, (24)

Vector potential coupling

We define

F lA (t) ≡ c2AtTf lA
(
αk2

F t, Z
−1/ηqc/kF

) T
µ
, (25)

where cA is the dimensionless el-FP coupling constant for the vector potential.

Intervalley channels (l = 0, z)

Since sl = −1, the decay function for the intervalley Cooperons is similar with that for the scalar potential. Without
providing further details, we conclude that

f lA (T , ξ) =

∫ 2

0

dzSA (z)

∫ ∞

0

dx

∫ 2π

0

dψ

2π

1

xy2

Ξ−
[
T Θξ (x)x2, T Θξ (y) y2

]

Θ2
ξ (x) Θ2

ξ (y)
, (26)
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where y has been defined by Eq. (23), and

SA (z) =
1

2

(
1− (z/2)

2
)−1/2

θ (2− z) . (27)

Note that SA (z) includes only the chiral factor since screening does not affect the vector potential coupling constant.

Intravalley channels (l = x, y)

For the intravalley channels, sl = 1. Correspondingly Ξ− has to be changed to Ξ+:

f lA (T , ξ) =

∫ 2

0

dzSA (z)

∫ ∞

0

dx

∫ 2π

0

dψ

2π

1

xy2

Ξ+

[
T Θξ (x)x2, T Θξ (y) y2

]

Θ2
ξ (x) Θ2

ξ (y)
. (28)

ASYMPTOTIC PROPERTIES OF THE DECAY FUNCTION AND THE PHASE DIAGRAM

The analytical expressions obtained in the previous sections allow us to determine τφ/A at arbitrary tempera-
ture T and chemical potential µ. (In the end, the dephasing times τφ/A are defined as solution of the equations

Fφ/A
(
τφ/A

)
= 1.) We have developed numerical procedure, which exploits these equations to calculate correspond-

ing τφ (T, µ) dependencies. Before presenting general results, let us concentrate on the properties of the functions
fφ/A (T , ξ) in the analytically accessible regimes.

Scalar potential coupling

Large ξ

For ξ � 1, one may identify three asymptotic regions depending on T . When T � ξ−2, the integral in fφ (T , ξ) is
dominated by the quadratic spectrum where Θξ (x) = 1 (refer to Eq. (24)), while at ξ−2 � T � ξ−η/2 the integral

is dominated by the part of spectrum where Θξ (x) = (x/ξ)
−η/2

. Thus, for not too large T
(
T � ξ−η/2

)
, one may

assume that the spectrum is homogeneous, and put Θξ (x) = (x/ξ)
b
. Then the function fφ reads:

fφ (T , ξ) =
ξ4b

2π

∫ 2

0

dzSφ (z)

∫ ∞

0

dx

∫ 2π

0

dψ
(z cosψ − x)

2

x1+2by4+2b
Ξ−
[
T (x/ξ)

b
x2, T (y/ξ)

b
y2
]
. (29)

We obtain,

fφ (T , ξ) = c (b) ξ
6b

2+b T 2+4b
2+b , (30)

with c (b) =
MbNφ
2+b , where Nφ =

∫ 2

0
dzSφ (z) = 0.89 (assuming ge ≈ 1), and

Mb =

∫ ∞

0

u−
5b+4
b+2 Ξ− (u, u) du = 2

3b
b+2 Γ

(
−5b+ 4

b+ 2

)
sin

(5b+ 4)π

(b+ 2) 2
. (31)

More specifically, for b = −η/2, cηI ≡ c (−η/2) = 0.03, when η = 0.8. For b = 0, cII ≡ c (0) = π
8Nφ. The scaling

expression in Eq. (30) can be achieved due to the fact that one can neglect all the z dependences except for Sφ (z)
in Eq. (29). Then, y ' x, ψ integral gives 2π, and the remaining integral over x leads to Eq. (30). The obtained
asymptotes will describe non-golden rule behavior for the decay function, in the region I (b = −η/2) and II (b = 0).
Note that for b = 0, fφ = cIIT .

Next, for T � ξ−η/2, the golden rule regime holds and the vertex diagram is not important any more. In this case,
one can put Ξ− → 1, and fφ (T , ξ) becomes independent on T :

fφ (T , ξ) =

∫ 2

0

dzSφ (z)

∫ ∞

0

dx

∫ 2π

0

dψ

2π

(z cosψ − x)
2

xy4

1

Θ2
ξ (x) Θ2

ξ (y)

= cηIV ξ
−2η, (32)
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where cηIV = ηUηW η
∫ 2

0
dzSφ (z) z2η−2. Here, with Jn (u) being the Bessel function of the first kind, Uη ≡

∫∞
0
u−2ηJ1 (u) du = 4−ηΓ(1−η)

Γ(1+η) , and W η ≡
(∫∞

0
uη−1J0 (u) du

)2
+
(∫∞

0
uη−1J2 (u) du

)2
=

(
2η−1Γ(η/2)
Γ(1−η/2)

)2

+
(

2η−1Γ(1+η/2)
Γ(2−η/2)

)2

. For η = 0.8, this yields Uη = 1.63 and W η = 2.42. Eq. (32) describes the asymptotic behav-

ior of the function fφ (T , ξ) in region IV.
As a result, we see that the function fφ (T , ξ) for large ξ evolves with growing T as follows (regions of applicability

can be easily read off from these equations):

cIIT → cηI ξ
− 3η

2−η/2 T
2−2η
2−η/2 → cηIV ξ

−2η. (33)

As indicated in the main text, the matching of different asymptotes gives us a separation between different regions of
the dephasing rate on the (T − µ) plane: The black line in the Fig. 3m corresponds to matching of the first pair of
asymptotes. The location of the region IV is related to matching of the second pair.

Small ξ

For small ξ � 1, there are two asymptotic regions depending on the value of T . For T � 1, the integral in Eq.
(29) is always dominated by the quadratic spectrum (b = 0), and function fφ (T , ξ) acquires the asymptote linear in
T (compare with Eq. (30) at b = 0):

fφ (T , ξ) = cIIT . (34)

At large T � 1, the golden rule is applicable. In this region,

fφ (T , ξ) = cIII log 1/ξ, (35)

where cIII =
∫ 2

0
Sφ (z) /z2dz. Note, that cηI , cII , cIII and cηIV implicitly depend on ge via Sφ (z), see Eq. (19). Thus,

in the case of small ξ, fφ (T , ξ) evolves with growing T as follows

cIIT → cIII log 1/ξ. (36)

The blue line in the Fig. 3m corresponds to matching of the above asymptotes.
Equation (24) allows for straightforward numerical evaluation. Here as an illustration, we present the numerical

calculation of the function fφ (T ). From the plot we see an excellent agreement with theoretical calculation for the
region T � 1 and T � 1, even for an intermediate value of ξ = 0.52.

1 2 3 4 5
T

0.005

0.010

0.015

fΦ

FIG. 3: Plot of the function fφ (T ). The parameters are taken as follows: η = 0.8, ξ = 0.52, and Z = 3. The blue dots are
numerical calculation and the red lines are the asymptotes for different region mentioned above.

Phase diagram of the dephasing rate

In Fig. 3m, the blue and black lines have been found by matching the asymptotic behavior of the dephasing rates
deep in regions I, II and III. The blue line is found as a consequence of matching Eq. (34) with Eq. (35). It is defined
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by the criterion ωkF τφ ≈ 3, where τφ is calculated numerically from Eq. (11m) with the phonon frequency ωkF taken
from Eq. (4m). The black line is found by matching the first pair in Eq. (33), and it can be obtained according to
the equation ωqcτφ ≈ 7. As mentioned in the main text, the obtained rate has a transition from τ−1

φ ∼ T 2 to τ−1
φ ∼ T

when temperature is increased. This transition is illustrated on Fig. 4.

0 0.2 0.4

0

0.03

0.06

T HKL

t f-1
Hns-1

L

m HeVL
0.01
0.1

1 2 4 6 8
T HKL

0.001

0.002

0.003

0.004

0.005

tf
-1 Hps-1L

FIG. 4: Depahsing rate as a function of temperature at two different chemical potentials. The transition from a quadratic to
linear dependence takes place at ∼4K for the red solid line. For lower chemical potential (represented by the blue dashed line),
the transition happens at a lower temperature as shown in the inset.

Note that besides the regions discussed in the main text, on the (T − µ) plane there exists another asymptotic
region (IV), not mentioned in Eqs. (12m). It lies at very small densities below the blue line and above the line ξ = 1.
In this region, the dephasing rate is still described by the GR, but contrary to region III, renormalization of the FP
spectrum at low momenta is essential. In this situation, the dephasing rate equals τ−1

φ ∼ γT (µ/µ0)
2η−1

(T/T0)
1−η

.
However, the relevant densities are so small, that this region does not fit into the scale of Fig. 3m.

It is instructive to compare the situation with flexural phonons to that for ordinary phonons in semiconductors,
where the dephasing process can be viewed as coming from the energy diffusion via low-energy (i.e., quasi-elastic)
collisions [4]. Under these conditions, the dephasing rate τ−1

φ ∼
√

(τφ/τout) δε2, where δε denotes the characteristic
energy transfer during a single scattering event. Thus, the accumulation of phase in the course of the energy diffusion

yields τ−1
φ ∼

(
δε2/τout

)1/3
. The specific point of our problem, compared to dephasing via usual phonons, is that

an electron is coupled to two flexural phonons, and dephasing cannot be described by the energy diffusion process.
Because of this two-phonon interaction, the support of the correlation function of the fluctuations is not characterized
by any typical frequency Ω, and frequency transfer occurs in such a way that typical energy transfer is of the order of
τ−1
φ (T ). In particular, this allows for an energy transfer exceeding TBG, although the momentum transfer is limited

by 2kF . As a result, the decay function Fφ(t) at short times (i.e., in the non-GR regime) is proportional to t2, rather
than t3 as for the case of the energy diffusion. Note that the energy diffusion corresponds to the expansion of the
factor Cφ(t) ∼ (Ωt)2 which leads to the t3-dependence of Fφ(t). As we have already mentioned, in the case of FPs
one cannot expand Cφ(t).

Vector potential coupling

Intervalley channel

The similarity (compare Eq. (24) with Eq. (26)) with the scalar potential case makes the calculation of asymptotes
for the function f lA (T , ξ) straightforward. The function f lA (T , ξ) evolves with the growth of T in the following fashion:

for ξ � 1,

dIIT → dηI ξ
− 3η

2−η/2 T
2−2η
2−η/2 → dηIV ξ

−2η; (37)

while for ξ � 1,

dIIT → dIIIξ
−1. (38)

Note that due to the absence of screening, dependence on ξ is stronger than in the case of the scalar potential, compare
Eq. (36) with Eq. (38).
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Let us present some technical details. Here dηI ≡ d (−η/2) , where d (b) = π
4

Mb

1+b/2 and Mb is defined in Eq. (31);

specifically, for b = 0, dII ≡ d (0) = 1/64. In the GR region, the function f lA (T , ξ) is independent on T . Its asymptotic
behavior is given as follows:

fA (ξ) =

∫ 2

0

dzSA (z)

∫ ∞

0

dx

∫ 2π

0

dψ

2π

1

xy2

1

Θ2
ξ (x) Θ2

ξ (y)

≡
{
dIIIξ

−1 for ξ � 1
dηIV ξ

−2η for ξ � 1
. (39)

Here, for η > 1/2 (which is important for the convergence of the following integral),

dIII =
1

2

∫ ∞

0

dz

∫ ∞

0

dx

∫ 2π

0

dψ

2π

1

xy2

1

Θ2
ξ=1 (x) Θ2

ξ=1 (y)
, (40)

and

dηIV = 2ηUηV ηGA, (41)

where Uη is the same as in the case of the scalar potential, V η ≡
(∫∞

0
uη−1J0 (u) du

)2
=
(

2η−1Γ(η/2)
Γ(1−η/2)

)2

and GA =
∫ 2

0
dzSA (z) z2η−2 = 4η

√
π

8
Γ(η−1/2)

Γ(η) . For η = 0.8, this yields V η = 1.68 and GA = 1.73.

Intravalley channel

For the intravalley Cooperon, the function f lA (T , ξ) involves Ξ+ which does not vanish in the limit of T → 0.
Therefore, it evolves with the growth of T (i.e., from T � 1 to T � 1) as

2fA (ξ)→ fA (ξ) , (42)

where fA (ξ) is defined in Eq. (39). It is noteworthy that the static deformations produce dephasing here. This
happens because the electrons on the interfering trajectories are coupled to the vector potential of the same sign. The
situation is similar to that for a particle in the random magnetic field [5, 6]. Unfortunately, the observation of this
effect is obscured by the gaps inevitably produced in these channels by disorder scattering. The rate obtained from
F lA (t) = 1 changes from 2τ−1

∗,A to τ−1
∗,A with increasing temperature, where

τ−1
∗,A = γT

{
2.6 (µ/µ′0)

2η−1
(T/T ′0)

1−η
for ξ � 1

1.9
√
T/T ′0 for ξ � 1

. (43)

Here γ ∼ 0.02 is the adiabatic parameter defined in the main text, µ′0 ∼ γ∆c and T ′0 ∼ γ2∆c where ∆c describes the
energy scale of the anharmonicity (see the main text). Note that for ξ � 1, the characteristic momentum transfer

is ∼ qc

(
≡
√
T∆c

vF

)
instead of kF . As a result, the rate is independent of the chemical potential. Note also that for

the intravalley channels the diffusive limit (qcl� 1) for the calculation of dephasing due to the el-FP interaction can
be achieved at higher temperature as compared to the intervalley channels. For example, for dimensionless sheet
conductance g� ∼ 10 and chemical potential µ ∼ 0.1eV, the diffusive limit occurs already below T ∼ 0.5K.
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