71,918 research outputs found

    Subject-specific finite element modelling of the human hand complex : muscle-driven simulations and experimental validation

    Get PDF
    This paper aims to develop and validate a subject-specific framework for modelling the human hand. This was achieved by combining medical image-based finite element modelling, individualized muscle force and kinematic measurements. Firstly, a subject-specific human hand finite element (FE) model was developed. The geometries of the phalanges, carpal bones, wrist bones, ligaments, tendons, subcutaneous tissue and skin were all included. The material properties were derived from in-vivo and in-vitro experiment results available in the literature. The boundary and loading conditions were defined based on the kinematic data and muscle forces of a specific subject captured from the in-vivo grasping tests. The predicted contact pressure and contact area were in good agreement with the in-vivo test results of the same subject, with the relative errors for the contact pressures all being below 20%. Finally, sensitivity analysis was performed to investigate the effects of important modelling parameters on the predictions. The results showed that contact pressure and area were sensitive to the material properties and muscle forces. This FE human hand model can be used to make a detailed and quantitative evaluation into biomechanical and neurophysiological aspects of human hand contact during daily perception and manipulation. The findings can be applied to the design of the bionic hands or neuro-prosthetics in the future

    Prizes and Lemons: Procurement of Innovation under Imperfect Commitment

    Get PDF
    The literature on R&D contests implicitly assumes that contestants submit their innovation regardless of its value. This ignores a potential adverse selection problem. The present paper analyzes the procurement of innovations when the procurer cannot commit to never bargain with innovators who bypass the contest. We compare ?xed-prize tournaments with and without entry fees, and optimal scoring auctions with and without minimum score requirement. Our main result is that the optimal ?xed-prize tournament is more pro?table than the optimal auction since preventing bypass is more costly in the optimal auction

    Decentralized Optimal Merging Control for Connected and Automated Vehicles

    Full text link
    This paper addresses the optimal control of Connected and Automated Vehicles (CAVs) arriving from two roads at a merging point where the objective is to jointly minimize the travel time and energy consumption of each CAV. The solution guarantees that a speed-dependent safety constraint is always satisfied, both at the merging point and everywhere within a control zone which precedes it. We first analyze the case of no active constraints and prove that under certain conditions the safety constraint remains inactive, thus significantly simplifying the determination of an explicit decentralized solution. When these conditions do not apply, an explicit solution is still obtained that includes intervals over which the safety constraint is active. Our analysis allows us to study the tradeoff between the two objective function components (travel time and energy within the control zone). Simulation examples are included to compare the performance of the optimal controller to a baseline with human-driven vehicles with results showing improvements in both metrics.Comment: 16 pages, 2nd version, 20 figure
    corecore