283 research outputs found

    Data on Spectrum-Based Fluorescence Resonance Energy Transfer Measurement of \u3cem\u3eE. coli\u3c/em\u3e Multidrug Transporter AcrB

    Get PDF
    This paper presented the dataset of correction parameters used in the determination of the energy transfer efficiencies from the spectrum-based fluorescence resonance energy transfer (FRET) measurement in a trimeric membrane protein AcrB. The cyan fluorescent protein (CFP) and yellow fluorescent protein (YPet) were used as the donor and acceptor, respectively. Two AcrB fusion proteins were constructed, AcrB-CFP and AcrB-YPet. The proteins were co-expressed in Escherichia coli cells, and energy transfer efficiency were determined in live cells. To obtain reliable energy transfer data, a complete set of correction parameters need to be first determined to accommodate for factors such as background fluorescence and spectra overlap. This paper described the methodology and determination of the correction factors, which are useful data and reference points for researchers working on fluorescence measurement of membrane protein complexes in live bacteria cells. Further interpretation and discussion of these data can be found in “Comparison of in vitro and in vivo oligomeric states of a wild type and mutant trimeric inner membrane multidrug transporter” (Wang et al., in press)

    Crystal Structure of Bacillus Subtilis GabR, an Autorepressor and Transcriptional Activator of gabT

    Get PDF
    Bacillus subtilis GabR is a transcription factor that regulates gamma-aminobutyric acid (GABA) metabolism. GabR is a member of the understudied MocR/GabR subfamily of the GntR family of transcription regulators. A typical MocR/GabR-type regulator is a chimeric protein containing a short N-terminal helix-turn-helix DNA-binding domain and a long C-terminal pyridoxal 5′-phosphate (PLP)-binding putative aminotransferase domain. In the presence of PLP and GABA, GabR activates the gabTD operon, which allows the bacterium to use GABA as nitrogen and carbon sources. GabR binds to its own promoter and represses gabRtranscription in the absence of GABA. Here, we report two crystal structures of full-length GabR from B. subtilis: a 2.7-Å structure of GabR with PLP bound and the 2.55-Å apo structure of GabR without PLP. The quaternary structure of GabR is a head-to-tail domain-swap homodimer. Each monomer comprises two domains: an N-terminal winged-helix DNA-binding domain and a C-terminal PLP-binding type I aminotransferase-like domain. The winged-helix domain contains putative DNA-binding residues conserved in other GntR-type regulators. Together with sedimentation velocity and fluorescence polarization assays, the crystal structure of GabR provides insights into DNA binding by GabR at the gabR and gabT promoters. The absence of GabR-mediated aminotransferase activity in the presence of GABA and PLP, and the presence of an active site configuration that is incompatible with stabilization of the GABA external aldimine suggest that a GabR aminotransferase-like activity involving GABA and PLP is not essential to its primary function as a transcription regulator

    Railway Safety Risk Assessment and Control Optimization Method Based on FTA-FPN: A Case Study of Chinese High-Speed Railway Station

    Get PDF
    In order to make safety risk assessment more accurately and more reasonably for high-speed railway station in China, this paper analyzes risk factors of fault tree and transfers the fault tree of risk accident into fuzzy petri net and then builds the FPN-FTA model by combining the dynamic weighting fuzzy petri net (FPN) and fault tree analysis (FTA) based on the latter. This paper simulates the FTA-FPN model with Stateflow of Matlab software. Then, it builds up a bi-objective risk control model, making the minimum safety risk level and minimum necessary cost as the objectives, and it designs discrete particle swarm optimization algorithm to solve the risk control model. Finally, this paper selects stampede accident of Shijiazhuang high-speed railway station as an example in case study for assessing stampede risk level and gets the risk control schemes for this station. The results verify the feasibility and validity of the model and algorithm. Document type: Articl

    Study on the mechanisms of refracturing technology featuring temporary plug for fracturing fluid diversion in tight sandstone reservoirs

    Get PDF
    Well production rates in unconventional plays usually decline dramatically in the first year. Refracturing, which is a remedial production operation, is often done because original hydraulic fracturing failed to contribute any significant amount of flow or significant unfractured pay exists in the well. In order to maximize the fracturing fluid contact with the intact rock and to stimulate more reservoir volume in previously stimulated wells, a refracturing technology featuring a novel temporary plugging for fluid diversion is developed to enable the fracturing fluid to reach the untouched areas and to create reoriented fractures. In this paper, laboratory physical simulation tests of refracturing using fiber for effective temporary plugging is carried out to study the refracture morphology and the influencing factors of refractures. Results show that the refracture morphology is affected by the horizontal stress difference, the injection rate of initial fracturing fluid, and the natural fractures. Under condition of the different horizontal stress differences, the fracture initiation and orientation angle are different. When the horizontal stress difference is small, it is easy to form large angle fractures. The injection rate of initial fracturing fluid affects the length of initial fractures and refractures. The smaller the initial fracturing fluid injection rate is, the better the effect of temporary plugging in refracturing. The presence of natural fractures will lead to reorientation of refractures to form a complex fracture network. This study provides a theoretical guidance and technology support for refracturing operations
    corecore