1,049 research outputs found

    Transcriptional response of oil palm (Elaeis guineensis Jacq.) inoculated simultaneously with both Ganoderma boninense and Trichoderma harzianum

    Get PDF
    Application of beneficial microbes offers an environmentally friendly alternative for mitigation of basal stem rot (BSR) disease in oil palm. However, the biocontrol mechanisms of Trichoderma against the pathogenic Ganoderma spp. which cause BSR are largely unknown at the molecular level. To identify the transcripts involved during induced systemic resistance (ISR), we analyzed the root transcriptomes of oil palm seedlings inoculated simultaneously with both G. boninense and T. harzianum, and un-inoculated oil palm seedlings, as well as those that were inoculated with either pathogenic or beneficial fungi. Our analyses revealed that the biocontrol mechanisms of T. harzianum against G. boninense involve modulation of genes related to biosynthesis of phytohormones (ethylene, MeJA and MeSA), antioxidant (l-ascorbate and myo-inositol) and unique secondary metabolites such as momilactone, cell wall metabolisms, and detoxification of phytotoxic compounds; in addition to its role as a biofertilizer which improves nutritional status of host plant. The outcomes of this study have fueled our understanding on the biocontrol mechanisms involving T. harizianum against G. boninense infection in oil palm roots

    Identifcation of reference genes in chicken intraepithelial lymphocyte natural killer cells infected with very-virulent infectious bursal disease virus

    Get PDF
    Due to the limitations in the range of antibodies recognising avian viruses, quantitative real-time PCR (RT-qPCR) is still the most widely used method to evaluate the expression of immunologically related genes in avian viruses. The objective of this study was to identify suitable reference genes for mRNA expression analysis in chicken intraepithelial lymphocyte natural killer (IEL-NK) cells after infection with very-virulent infectious bursal disease virus (vvIBDV). Fifteen potential reference genes were selected based on the references available. The coefcient of variation percentage (CV%) and average count of these 15 genes were determined by NanoString technology for control and infected samples. The M and V values for shortlisted reference genes (ACTB, GAPDH, HMBS, HPRT1, SDHA, TUBB1 and YWHAZ) were calculated using geNorm and NormFinder. GAPDH, YWHAZ and HMBS were the most stably expressed genes. The expression levels of three innate immune response related target genes, CASP8, IL22 and TLR3, agreed in the NanoString and RNA sequencing (RNA-Seq) results using one or two reference genes for normalisation (not HMBS). In conclusion, GAPDH and YWHAZ could be used as reference genes for the normalisation of chicken IEL-NK cell gene responses to infection with vvIBDV

    Leaf transcriptome of oil palm (Elaeis guineensis Jacq.) infected by Ganoderma boninense

    Get PDF
    Oil palm is susceptible to Ganoderma infection which causes basal stem rot (BSR). Induced defense gene profiles in oil palm leaves will assist the identification of markers for detection of infected oil palms. In this study, we have sequenced the mRNA samples from the leaves of G. boninense infected oil palm seedlings (LG) and in control treatment (LC). Differential gene expression analysis showed 711 and 482 genes that were up-and down-regulated more than fourfold in LG, respectively, compared to the LC. Differential gene expression analyses revealed the modulation of oil palm genes involved in defense response such as chitinases, glucanases, and thaumatin-like proteins that showed up-regulation in LG. In addition, genes for enzymes related to the biosynthesis of flavonoids, alkaloids, and terpenes were up-regulated, while many genes involved in photosynthesis were found to be suppressed in LG. Our findings provided information on how infected oil palm leaves diverting their resources into defense at the cost of other biological processes, contributing towards identification of candidate markers for the detection of infected oil palms

    Radiomics in urolithiasis: Systematic review of current applications, limitations, and future directions

    Get PDF
    Radiomics is increasingly applied to the diagnosis, management, and outcome prediction of various urological conditions. Urolithiasis is a common benign condition with a high incidence and recurrence rate. The purpose of this scoping review is to evaluate the current evidence of the application of radiomics in urolithiasis, especially its utility in diagnostics and therapeutics. An electronic literature search on radiomics in the setting of urolithiasis was conducted on PubMed, EMBASE, and Scopus from inception to 21 March 2022. A total of 7 studies were included. Radiomics has been successfully applied in the field of urolithiasis to differentiate phleboliths from calculi and classify stone types and composition pre-operatively. More importantly, it has also been utilized to predict outcomes and complications after endourological procedures. Although radiomics in urolithiasis is still in its infancy, it has the potential for large-scale implementation. Its greatest potential lies in the correlation with conventional established diagnostic and therapeutic factors
    corecore