465 research outputs found

    Coupling the reduced-order model and the generative model for an importance sampling estimator

    Full text link
    In this work, we develop an importance sampling estimator by coupling the reduced-order model and the generative model in a problem setting of uncertainty quantification. The target is to estimate the probability that the quantity of interest (QoI) in a complex system is beyond a given threshold. To avoid the prohibitive cost of sampling a large scale system, the reduced-order model is usually considered for a trade-off between efficiency and accuracy. However, the Monte Carlo estimator given by the reduced-order model is biased due to the error from dimension reduction. To correct the bias, we still need to sample the fine model. An effective technique to reduce the variance reduction is importance sampling, where we employ the generative model to estimate the distribution of the data from the reduced-order model and use it for the change of measure in the importance sampling estimator. To compensate the approximation errors of the reduced-order model, more data that induce a slightly smaller QoI than the threshold need to be included into the training set. Although the amount of these data can be controlled by a posterior error estimate, redundant data, which may outnumber the effective data, will be kept due to the epistemic uncertainty. To deal with this issue, we introduce a weighted empirical distribution to process the data from the reduced-order model. The generative model is then trained by minimizing the cross entropy between it and the weighted empirical distribution. We also introduce a penalty term into the objective function to deal with the overfitting for more robustness. Numerical results are presented to demonstrate the effectiveness of the proposed methodology

    Can crop yield risk be globally diversified?

    Get PDF
    In 2007 and 2008 world food markets observed a significant price boom. Crop failures simultaneously occurring in some of the world’s major production regions have been quoted as one factor among others for the price boom. Against this background, we analyse the stochasticity of crop yields in major production areas. The analysis is exemplified for wheat, which is one of the most important crops worldwide. Particular attention is given to the stochastic dependence of yields in different regions. Thereby we address the question of whether local fluctuations of yields can be smoothed by international agricultural trade, i.e. by global diversification. The analysis is based on the copula approach, which requires less restrictive assumptions compared with linear correlations. The use of copulas allows for a more reliable estimation of extreme yield shortfalls, which are of particular interest in this application. Our calculations reveal that a production shortfall, such as in 2007, is not a once in a lifetime event. Instead, from a statistical point of view, similar production conditions will occur every 15 years.crop yield risk, fully nested hierarchical Archimedean copulas (FNAC), price boom

    Equilibrium of Heterogeneous Congestion Control: Optimality and Stability

    Get PDF
    When heterogeneous congestion control protocols that react to different pricing signals share the same network, the current theory based on utility maximization fails to predict the network behavior. The pricing signals can be different types of signals such as packet loss, queueing delay, etc, or different values of the same type of signal such as different ECN marking values based on the same actual link congestion level. Unlike in a homogeneous network, the bandwidth allocation now depends on router parameters and flow arrival patterns. It can be non-unique, suboptimal and unstable. In Tang et al. (“Equilibrium of heterogeneous congestion control: Existence and uniqueness,” IEEE/ACM Trans. Netw., vol. 15, no. 4, pp. 824–837, Aug. 2007), existence and uniqueness of equilibrium of heterogeneous protocols are investigated. This paper extends the study with two objectives: analyzing the optimality and stability of such networks and designing control schemes to improve those properties. First, we demonstrate the intricate behavior of a heterogeneous network through simulations and present a framework to help understand its equilibrium properties. Second, we propose a simple source-based algorithm to decouple bandwidth allocation from router parameters and flow arrival patterns by only updating a linear parameter in the sources’ algorithms on a slow timescale. It steers a network to the unique optimal equilibrium. The scheme can be deployed incrementally as the existing protocol needs no change and only new protocols need to adopt the slow timescale adaptation

    Stability and chaos of the duopoly model of Kopel: A study based on symbolic computations

    Full text link
    Since Kopel's duopoly model was proposed about three decades ago, there are almost no analytical results on the equilibria and their stability in the asymmetric case. The first objective of our study is to fill this gap. This paper analyzes the asymmetric duopoly model of Kopel analytically by using several tools based on symbolic computations. We discuss the possibility of the existence of multiple positive equilibria and establish necessary and sufficient conditions for a given number of positive equilibria to exist. The possible positions of the equilibria in Kopel's model are also explored. Furthermore, if the duopolists adopt the best response reactions or homogeneous adaptive expectations, we establish rigorous conditions for the existence of distinct numbers of positive equilibria for the first time. The occurrence of chaos in Kopel's model seems to be supported by observations through numerical simulations, which, however, is challenging to prove rigorously. The second objective is to prove the existence of snapback repellers in Kopel's map, which implies the existence of chaos in the sense of Li-Yorke according to Marotto's theorem.Comment: arXiv admin note: substantial text overlap with arXiv:2301.1262
    • …
    corecore