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Abstract 

In 2007 and 2008 world food markets observed a significant price boom. Crop 
failures simultaneously occurring in some of the world’s major production regions 
have been quoted as one factor among others for the price boom. Against this 
background, we analyse the stochasticity of crop yields in major production areas. 
The analysis is exemplified for wheat, which is one of the most important crops 
worldwide. Particular attention is given to the stochastic dependence of yields in 
different regions. Thereby we address the question of whether local fluctuations of 
yields can be smoothed by international agricultural trade, i.e. by global 
diversification. The analysis is based on the copula approach, which requires less 
restrictive assumptions compared with linear correlations. The use of copulas allows 
for a more reliable estimation of extreme yield shortfalls, which are of particular 
interest in this application. Our calculations reveal that a production shortfall, such as 
in 2007, is not a once in a lifetime event. Instead, from a statistical point of view, 
similar production conditions will occur every 15 years. 
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I Introduction 

Agricultural commodity markets have been regulated for a long time by a variety of 
instruments, including intervention prices, fixed and variable tariffs, export subsidies 
and production quotas. Due to negotiations within the WTO, most agricultural 
markets have been deregulated during the last two decades throughout the world. 
This abolishment of price stabilizing measures led to an increase in price volatility on 
formerly regulated markets (Yang et al., 2001; Chavas and Kim, 2006). Although 
higher price fluctuations were expected, the crop price boom in 2007/2008 surprised 
market experts. This rise of agricultural commodity prices can be regarded from two 
perspectives. On the one hand, it quickened optimism in the agribusiness. For 
example, the end of the technological treadmill, which prevented an increase of farm 
incomes in the past, was proclaimed (von Witzke et al., 2008). On the other hand, the 
sharp increase of food prices shortened the food supply in low income countries and 
aggravated hunger and malnutrition among poor people. From a scientific point of 
view, two questions arise: what factors were responsible for the price boom and how 
likely is it that a similar constellation of price determining factors will occur again? 
It is widely accepted that multiple factors caused the recent increase in agricultural 
commodity prices. Sarris (2009) emphasizes three main factors: first, crop failures 
simultaneously occurred in major production region of the world; second, there was 
an increased demand for biofuels; and third, investors in agricultural commodity 
markets were involved in speculative activities. This article focuses on the first of 
these factors, i.e. stochastic shifts on the supply side. It is well known that 
agricultural yields, crop yields in particular, heavily depend on weather conditions. 
Thus, weather risks are immediately reflected in yield risks (e.g. Odening et al., 
2008; Musshoff et al., 2009). When analysing the impact of yield fluctuations on 
agricultural prices, the choice of an appropriate perspective is important. For 
example, a regional analysis is not appropriate because poor harvests in one country 
can be compensated by imports (Lotze-Campen, 2007). In integrated markets, 
diversification by global trade has to be taken into account and thus a global analysis 
of agricultural yield risks is necessary. Against this background, we analyse the 
stochasticity of crop yields in the world’s major production areas. The analysis is 
exemplified for wheat, which is one of the most important crops in the world in 
terms of production area and food security. Particular attention is given to the 
stochastic dependence of yields in different parts of the world. The spatial 
dependence structure is modelled using copulas. Compared with linear correlations, 
the application of copulas requires less restrictive assumptions and has advantages in 
the estimation of the joint occurrence of extreme events (c.f. Embrechts et al., 1999).  
Copulas became increasingly popular in the last decade and have been applied to 
various finance and insurance problems (Cherubini et al., 2004; Chen et al., 2009; 
Turgutlu and Ucer, 2010). Bianchi et al. (2009) integrated a copula approach in the 
Vector-Auto-Regression model (VAR) to model and forecast the dynamics of 
industrial production in the euro-zone. Applications in agricultural economics, 
however, are rare. Vedenov (2008) analyses the relationship between individual farm 
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yields and area yields and Zhu et al. (2008) investigate the dependence of prices and 
yields in the context of revenue insurance. 
The remainder of the article is divided into two main sections. Section II describes 
the methodological approach. We briefly review the concept of the copula and 
present the idea of a fully nested Archimedian copula for modelling high 
dimensional dependence structures. This concept is then applied to the estimation of 
joint yield risks of major wheat producers. Data and estimation results are presented 
in section III. The article ends with conclusions on the systemic risk of wheat 
production and the effectiveness of global trade to diversify this risk. 

II Modelling Stochastic Dependence using Copulas 

Theoretical framework 

The outcome of multi-dimensional risks can be presented by using a multivariate 
distribution  dxxF ,,1  , in which ix  denotes the realization of the random variable 

iX , di ,,1 . Direct estimation of the joint distribution F  usually fails due to 

insufficient data. Alternatively, the joint distribution F  can be determined by linking 
the univariate marginal distribution  ii xF  by means of the (linear) correlation 

coefficients between random variables. Yet, such kind of estimation of the joint 
distribution F  is valid only for the family of elliptical multivariate distribution 
including multivariate normal distribution (cf. Embrechts et al., 2002). If this 
assumption does not hold then the associated (linear) correlation coefficients are not 
able to capture the complete information about the dependence structure between 
each single risk involved – particularly for the tail dependence, which plays an 
important role for the analysis of extreme events. Xu et al. (2010) showed with an 
example of weather risk how large the estimation error can be if linear correlation 
were applied instead of a more appropriate and sophisticated model.  
The theoretical fundament of the copula concept is given by Sklar's Theorem (Sklar, 
1959), which states that any d -dimensional distribution  dxxF ,,1   can be 

described by using a copula function )(C :  

RxxxFxFCxxF dddd  ,,)},(,),({=),,( 1111   (1)

)( ii xF  denotes the (univariate) marginal distribution and    1,0 iii xFu  is 

therefore the uniform marginal distribution. Following Joe (1997), the copula 
function can be understood as a multivariate distribution function with all margins 
being uniformly distributed on [0,1]:  

iidd xuFuFuFFuuC
id

 )()},(,),({=),,( 11
1

1
1 1

  (2)

Equation 1 allows us to decompose any d -dimensional joint distribution function 
),,( 1 dxxF   into its d  marginal distributions )(,),( 11 dd xFxF  , and a copula  C , 

which describes the dependence structure among the d  random variables. As with 
the estimation of any distribution function one can apply either parametric or 
nonparametric (e.g. kernel) approaches (Chen and Huang, 2007). Vedenov (2008) 
argues that a nonparametric copula is a natural choice since there is no constructive 
way to determine the optimal copula function and thus the danger of misspecifying 



3 

the copula is high. On the other hand, if valuable prior information is available, 
parametric methods can improve the estimation results (Charpentier et al., 2007; 
Genest et al., 1995). The main reason for using a parametric approach in this study is 
its superiority in simulating data from the copula. In fact, up to now there is no 
efficient method on simulation from the multivariate empirical distributions.  
Parametric copulas can be classified into elliptical and Archimedean copulas. In the 
following, we concentrate only on Archimedean copulas, which can be described in a 
closed form. This property is convenient when applying simulation procedures. The 
general expression of Archimedean copulas is given by: 
   )()(,, 1

1
1 dd uuuuC      (3)

where    is called the generator function with 1=(0) , 0=)(  and 1  is its 

inverse. The family of Archimedean copulas includes three important types: the 
Gumbel, the Clayton and the Frank. The Gumbel copula is asymmetric and 
appropriate for presenting upper tail dependence which shows a stronger linkage 
between positive values, more variability and more mass in the positive tail than, for 
example, the Gaussian copula (Okhrin, 2007). In contrast to the Gumbel copula, the 
Clayton copula assigns a higher probability to joint extreme negative events than to 
joint extreme positive events. It displays lower tail dependence and is characterized 
by zero upper tail dependence (Nelsen, 2006, p. 215). Because of this feature, the 
Clayton copula has been widely used in financial applications and risk management 
(e.g., Junker and May, 2005; Blum et al., 2002). The Frank copula is adequate to 
model symmetric dependence structures and exhibits both positive and negative 
dependence. In contrast to the Gumbel and the Clayton copula, the Frank copula 
implies tail independence (Nelsen, 2006, p. 215).  

Hierarchical construction of a multi-dimensional dependence structure 

Although the approach described above provides a relatively easy method to estimate 
and simulate the high-dimensional dependence structure, it is in fact extremely 
restrictive in the practical application of modelling a higher-dimensional case. The 
reason is that most multivariate Archimedean copula models present the whole 
dependence structure with only one single copula parameter  , independent of the 
dimension of the model. Consequently, the substructure of the dependence is 
invisible. Furthermore, a multivariate Archimedean copula implicitly assumes that 
the order of margins iu  within the copula function is exchangeable. For instance, for 

a three dimensional case this means    213321 ,,,, uuuCuuuC  . However, the 

implied permutation symmetry of the copula represents a very specialized 
dependence structure, which is not plausible for many applications (cf. McNeil et al., 
2005, p. 224; Savu and Trede, 2010).  
In view of these shortcomings, attempts have been made to develop a more flexible 
and appropriate Archimedean model for capturing a high-dimensional dependence 
structure. One convincing method is the so-called Fully-Nested Archimedian 
Copulas (FNAC), which aggregates one dimension step by step starting from a low 
dimensional copula (Savu and Trede, 2010). The model for the d -dimensional 
dependence structure using the FNAC approach can be expressed as: 
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          
    dddd

dddd

uu

uuuuuC

112

322111
1

12
1

21
1
11

                       

,,


















 (4)

where     11 ,, d   are generator functions and their inverses     


 1
1

1
1 ,, d   

capture the joint distribution of each aggregation step from low dimension (low 
level) to high dimension (high level). The symbol „ “ is the composition operator. 
The FNAC method (Equation 4) is therefore characterized by up to 1d  copulas 
composed of 2/)1( dd  possible combinations of distinct bivariate marginal 
distributions     jjii xFxF ,  with ji  . The substructures of multidimensional 

dependence cluster 1
21


 dd    are expressed hierarchically (see Fig. 2 in Section III). 

The construction of the multivariate dependence structure can be carried out with 
following steps: Initially at the lowest level, two variables with the largest copula 
parameter   among all of the 2/)1( dd  pairs of variables will be combined by 

using a bivariate Archimedean copula. The first combination at the lowest level (two-
dimensional dependence structure) can be described as: 

      2111
1

12111 , uuuuCz     (5)

On the second level (three-dimensional dependence structure), the joint distribution 

1z  with 3u  is nested by using  312 ,uzC : 

              3212
1

2322111
1

12
1

2312 , uzuuuuzC      (6)

This procedure will be repeated until the highest level has been reached. Since 
Equation 4 involves 1d  generator functions, there are total 1d  copula 
parameters to be estimated (in contrast to Equation 3).  
Usually, all bivariate combinations within a FACN structure employ the same copula 
type, so that the copula models differ only in the copula parameters. These 
parameters must be strictly monotone decreasing from the lowest level to the highest 
level, 121  d  . This condition, together with the use of the same copula 

type, ensures that the outcome of the combination of two copulas from different 
levels results again in a proper copula (Joe, 1997; Embrechts et al., 2003).  

Estimation and Goodness-of-Fit tests of copulas 

In general, three approaches are available to estimate the parameters of a copula (cf. 
Cherubini et al., 2004). The Exact Maximum Likelihood Method (EMLM) estimates 
the copula parameter   and the parameters of the marginal distributions d ,,1   

simultaneously. Alternatively, a two-step procedure can be used, where the 
parameters of the margins   are estimated first. Afterwards the copula parameters 
are determined, e.g. by maximum likelihood, treating the parameters of the margins 
as given. This procedure is called the inference for margin (IFM) method (Joe 1997). 
The IFM method is less efficient than the one-step maximum likelihood but 
computationally more attractive. An alternative semi-parametric estimation 
procedure is the Canonical Maximum-Likelihood (CML) (Haerdle et al., 2008). The 
log-likelihood function is given by:  

    }];ˆ,,ˆ{[lnargmax=ˆ
11

1=




djdj

k

j

xFxFc   (7)
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 ijxF̂  is the i -th empirical marginal distribution based on the observations ijx , 

kj ,,1 . ̂  is also called as Maximum-Pseudo-Likelihood-Estimator or rank-

based Maximum-Likelihood-Estimator. The difference between CML and the two 
previously introduced methods, EMLM and IFM, is that the parametric marginal 
distribution is substituted by the empirical (rank-based) marginal distribution 
(Equation 10). The CML method is quite useful if the precise estimation of 
parametric margins is hampered by a limited number of observations. The CML 
method will be applied to the estimation of the copula parameter in this study. 
Since different copula models imply very different dependence structures, it is 
important to apply the correct one that fits the empirical data the best. Although the 
underlying test problem is analogous to a Goodness-of-Fit (GoF) test for univariate 
distributions, it is more difficult applied to multidimensional distributions. In this 
context, Genest and Remillard (2008) propose a GoF-test belonging to the class of 
the dimension reduction approaches. Let C  be the true d -dimensional copula for the 
empirical data, which is to be modelled and let C  be the underlying copula 

candidate to be tested. The subscript   is the associated copula parameter. The 
testing hypothesis can be expressed as: 

      ;=:  vs.;=: 10 CCHCCH CC (8)
where   is the space of copula parameter. The GoF-test for Equation 8 is based on 

the Cramer-von-Mises Statistic T̂ , which measures the distance between empirical 

copula  Ĉ  and the candidate of parametric copula )(C .  

   2
1=

2

[0,1]
)()(ˆ=)(ˆ)()(ˆ=ˆ

jj

k

j
d ZCZCzCdZCZCkT     (9)

Herein, Z  denotes the d -dimensional empirical marginal distribution which can be 
described as 









 1

,,
1

=),,(= 1
1 k

R

k

R
zzZ djj

d  , kj ,,1  (10)

where k  is the number of observations and ijR  is the rank of the observations ijx  

amongst ( 11x ,..., dkx ), ),(1, di  . The elements of Z  are called pseudo-

observations. 

The empirical copula Ĉ  can then be expressed as 

    ),,(
1

=)(ˆ
11

1=
djdj

k

j

uzuzI
k

ZC   ,      d
duu [0,1],,1   (11)

where )(I  is an indicator function and    duu ,,1   are order statistics from the 

sample. 
To obtain reliable p -value estimates, a parametric bootstrap procedure is needed, in 
which the calculation of Equation 9 is repeated for L  times. The p -value for 

Equation 9 can be calculated by using the following expression: 

)ˆ>(
1

1
= *

1=

TTI
L

p l

L

l


, Ll ,,1  (12)

The random variable *
lT  is defined as: 



6 

2
*

*
**

1=

* )()(= 



  l

l
ll

k

j
l ZCZCT


, ),,(= ,,,,1

*
ljdljl zzZ   (13)

The bootstrap procedure for *
lT  is comprised of the following steps:  

a) the random sample ),,( *
,

*
1, ldl xx   from the hypothesized copula C  is generated 

and the associated pseudo-samples *
lZ  are calculated according to Equation 10;  

b) the parameters *
l  are estimated based on *

lZ ;  

c) the empirical copula *
lC  is determined according to Equation 11;  

d) the steps from a) to c) will be repeated for L  times; and  
e) the p -value is calculated, which is straightforward once *

lC  and *
l  are known. 

Copula-based simulation of simultaneous risks 

Once the marginal distributions and the copula have been determined and estimated 
parametrically, the realization of d -dimensional random variables, which follow the 
joint distribution  dxxF ,,1   can be generated by employing the Monte-Carlo 

simulation method. In the context of multi-dimensional copulas, the „conditional 
inverse method“ has been employed (Haerdle and Okhrin, 2009). The basic idea of 
this method is to generate the multi-dimensional random variables recursively 
according to the associated conditional distribution. First, the d -dimensional 
independent variables dvv ,,1   are drawn from the uniform distribution  1,0U . 

Afterwards the d -dimensional uniform-distributed variables duu ,,1   will be 

generated. In contrast to the generation of dvv ,,1  , the d -dimensional variables 

duu ,,1   are stochastic dependent. The dependence structure of duu ,,1   is captured 

by the copulas  duuC ,,1  . To achieve this, a recursive procedure is carried out. In 

the first step, the initial value of 1u  is equal to 1v . The consecutive values duu ,,2   

can be determined by the following procedure: 
  divu ii ,,2  ,1    (14)

The relationship between iu  and iv  can be determined by a certain function    and 

through the inverse function of    the independent uniform-distributed multivariate 

variables dvv ,,1   will be transformed to the dependent uniform-distributed 

multivariate variables duu ,,1  . Therefore, the function    also describes the 

dependence structure of duu ,,1  .    can be defined as: 

   
   

11

111
1

11

1
1

111111

,,

,,

,,

,,
                         

,,,,






















i

ii
i

i

ii
i

iiiiii

uu

uuC

uu

uuC

uUuUuUPuuu











 (15)

 iC  stands for the copula with i -th dimensional margins. In the last step, the 

realizations ix  associated with each random variable iX  can be generated by using 

  diuFx iii ,,1   ,1    (16)

where  ii uF 1  is the inverse function of the marginal distribution  ii xF . The 

resulting realizations dxx ,,1  , which are simulated by using the above-mentioned 
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procedure, follow the joint distribution  dxxF ,,1  , or more precisely they follow 

the copula  duuC ,,1  . 

III Empirical Analysis of Shortfall Risk on Global Crop Production 

Data and modelling procedure 

The empirical analysis is based on the yield data of wheat for the main producing 
countries worldwide. To limit computational work, the eight most important 
countries are selected: Canada, China, France, Germany, India, Pakistan, Turkey and 
the USA1. In 2007, the amount of the wheat production in these countries share 58% 
of the total production worldwide. The empirical data of wheat yields for these 
countries is provided by FAO (http://faostat.fao.org) and is available from 1961 to 
2007, comprising of 47 observations. The empirical analysis involves the following 
steps: First, the total amount of wheat yield is converted into per hectare yields. 
Using the hectare yields makes it easier to compare countries with different 
production scales. Moreover, changes of the acreage from year to year will not affect 
the analysis2. Second, to eliminate the production trend caused by technical progress, 
the hectare yields are detrended by applying the following linear model:  

8,,1   ,,  itmy iiiti   (17)
where tiy ,  is the hectare yield (dt/hectare), im  the constant term for country i , t 

denotes time and i  captures technical progress. The residual i  is the detrended 

hectare yield. 
Table A1 in the appendix shows the detrended hectare   yields for eight countries in 
ascending order. Note that yields realized in 2007 were the third worst yields since 
1961 in four countries; however, this yield did not affect all eight countries. For 
example, in Pakistan a relatively good harvest was recorded in 2007. Furthermore, 
the figures provide an impression about the size of the yield volatility as well as their 
differences in each of the observed countries for each year. 
Using the detrended yield data i  in Equation 17, univariate yield distributions are 

specified and estimated for each wheat producing country. The type of yield 
distribution is selected according to a 2 -test. A hierarchical Archimedean copula, 

FNAC, has then been estimated for the eight-dimensional detrended hectare yield, i  

as described in the previous section. Once a hierarchical dependence structure is 
defined, the vector i  can be simulated by using conditional inverse method (see 

Equations 14 - 16). Finally, the total yield (tons) for the eight countries related to 
year 2007, tsim

ny , , as well as the average yield (dt/hectare) for the eight countries, 
tsim

ny , , can be calculated by: 

  8,,1   ,
8

1
,

,  


iatmy
i

iiini
tsim

n  , 2007t  (18)

                                                 
1  Although Russia belongs to the largest wheat producers, it had to be excluded from the analysis 

due to insufficient data. 
2  The harvested areas of wheat are depicted in Fig. A1 in the appendix. 
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and 





8

1

,,

i
i

tsim
n

tsim
n ayy  (19)

n  denotes the n -th simulation and ia  is the harvest area for country i . The 

simulation is carried out 10 000 times. The procedure results in an empirical 
distribution for the average yield and the total yield of wheat from which statistical 
parameters of interest can be derived. 

Results 

The results of the GoF-test for the marginal distributions of the detrended hectare 
yield, i , are presented in Table A2 in the appendix. Apparently, the random yields 

in the various countries cannot be described by only one type of distribution. Instead, 
the yields follow different distributions, such as Weibull, Gaussian or Lognormal 
distributions. Similar results are reported by Moriondo et. al., (2009) as well as 
Upadhyay and Smith (2005). This finding confirms that the joint yield distribution 
for all countries cannot be multivariate normal and hence the requirement for using 
linear correlations coefficients is not fulfilled.  
The selection of the appropriate copula type is based on the GoF-test described in the 
previous section. The Clayton, the Gumbel and the Franck copula have been 
considered as candidates. The test was conducted for all 28 possible country pairs. In 
most cases the Clayton copula yields the best fit and thus this copula type was chosen 
for the entire FNAC. This result also indicates that the use of linear correlation would 
be inappropriate.  
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Fig. 1. Contour lines for the joint probability of the residual of wheat yield 
(dt/hectare) for (a) France and India, (b) Turkey and USA, (c) Germany 
and China. (Type of copula: Clayton; bold dots = observed; thin dots = 
simulated). 

 
Fig. 1 illustrates the bivariate yield distributions for the following country pairs: a) 
France and India; b) Turkey and USA; and c) Germany and China. The contour lines 
of the bivariate distributions are obviously not symmetric and elliptical as implied by 
linear correlations. 
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Fig. 2. Fully nested hierarchical structure of the Archimedean copula, FNAC 

Next, the structure of the hierarchical copula is determined. The aggregation of 
countries rests on the test statistic of the GoF-test. Fig. 2 depicts the resulting 
dependence structure (left part) and presents the test statistics for the Clayton copula 
(right part). The estimates of the copula parameters decrease with increasing 
aggregation level, which is in accordance with theoretical requirements. An 
exception is the estimate on level six, which might be caused by the limited database 
that includes only 47 observations. As expected, the yields between neighbouring 
countries, for example between Germany and France, show a high stochastic 
dependence. On the other hand, it is surprising that the stochastic dependence 
between India and Germany is higher than the stochastic dependence between India 
in Pakistan. That means that stochastic dependence is not a simple function of 
distance as implied by commonly used decorrelation functions.  
Fig. 3 and Table 1 present the main results of our analysis, namely the distribution 
function for per hectare yields (Fig. 3(a)) and for the total wheat production 
(Fig. 3(b)). Fig. 3(a) and Fig. 3(b) refer to the yield level (mean yield with trend) and 
acreage at the end of the observation period, i.e. 2007. The interpretation of Fig. 3(a) 
is rather difficult since the distribution is derived by aggregating very heterogeneous 
regions. Thus, is helpful to use the outcome of the extreme year 2007 as a reference 
point. In 2007, a per hectare yield of 33.52 decitons was realized. According to 
Fig. 3(a) the stochastic yields fall below this level with a probability of 
approximately 7%. In other words, the harvest observed in 2007 was a rare event, but 
statistically it will recur on average every 15 years under constant conditions. 
 

Level 
Goodness-of-Fit test  
(Clayton copula) 

1 
Test 
statistics 

0.0216 

p -value 0.5790 

2 
Test 
statistics 

0.0195 

p -value 0.7050 

3 
Test 
statistics 

0.0272 

p -value 0.3940 

4 
Test 
statistics 

0.0463 

p -value 0.0920 

5 
Test 
statistics 

0.0198 

p -value 0.7330 

6 
Test 
statistics 

0.0215 

p -value 0.6470 

7 
Test 
statistics 

0.0226 

p -value 0.6500 
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(a) Average yield (dt/hectare) 

 

(b) Total yield (100 million tons) 

 

Fig. 3. Empirical and parametric distribution functions of global wheat 
production 

We present two alternative estimates for the distribution function of global wheat 
production. First, a parametric distribution, namely a Weibull distribution, has been 
estimated. In contrast to the copula based approach, this distribution has been 
directly fitted to the aggregated production data. Moreover, an empirical 
(nonparametric) distribution function has been estimated. Though a direct estimation 
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of the distribution function is much simpler compared to the derivation from 
marginals and copulas, it has some obvious flaws. First, the estimation relies on only 
47 observations and thus it will be plagued by low reliability, particularly in the tails. 
Second, the stochastic dependence structure of the various production regions is not 
revealed. Finally, it is questionable if different country-specific marginal yield 
distributions can be correctly represented by a single parametric distribution 
function. In light of these drawbacks, it is not surprising that the quantiles of the 
three distribution functions differ. Table 1 shows that the risk of global crop failures 
is underestimated by the direct estimation of the univariate distribution, though the 
means of all three distribution functions are almost equal. For example, the 1% 
quantile of the Weibull distribution for per hectare yield amounts to 33.37 dt/ha 
which is 1.28 dt/ha higher than the copula based estimate. The corresponding value 
of the empirical distribution cannot be uniquely determined due to its discrete nature. 
 

Table 1. Parameters of the estimated distribution functions for wheat 
production (all regions for the year 2007) 

Quantile Copula-based Univariate  
(Weibull) 

Empirical Independent 

AY
a
 TP

b
  AY

a
 TP

b
  AY

a
 TP

b
  AY

a
 TP

b
  

1% 32.09 3.37 33.37 3.54 n.a. n.a. 31.31 3.32 

5% 33.22 3.50 33.84 3.58 64.33  55.3  32.47 3.44 

10% 33.74 3.55 34.12 3.62 91.33  59.3  33.17 3.51 

50% 35.47 3.61 35.29 3.74 29.35  74.3  35.52 3.76 

Mean 35.37 3.73 35.31 3.59 35.30 3.59 35.53 3.76 

Variance 1.47 0.0152 0.81 0.0084 0.86 0.0089 3.47 0.0389 

Notes:
 a 

Average yield in dt/ha. 
b 

Total production in 100 mill. tons. 

To highlight the effect of global diversification of yield risk we present the results for 
the hypothetical scenario where yields are stochastically independent between all 
production regions. In this case, the distribution widens considerably and the 
variance increases by a factor of more than two (see Table 1 and Fig. 3). The effect 
of diversification is further elaborated in Fig. 4, which compares the variability of per 
hectare yields of different production regions. Apparently, the fluctuations of per 
hectare yields can be smoothed for most production regions by aggregation. This 
means that global trade can considerably reduce the shortfall risk for individual 
countries. It should be noted that a trade-off between average productivity and yield 
volatility exists. Intensive high tech production systems in Germany and France 
appears to be more sensitive to stochastic weather conditions compared to more 
extensive production systems in North America. Yield risk in India is similar to the 
global average, yet its average yields are relatively low. 
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Fig. 4. Empirical and parametric distribution functions of wheat yields   
(deviations from mean in dt/hectare) 

 

IV Conclusions 

The main finding of the analysis is that yield risk for wheat as an important foodstuff 
can be reduced by pooling and aggregating production globally. This provides an 
argument for international agricultural trade, which is beyond deterministic welfare 
gains. It has been stated that price volatility for agricultural commodities in the EU 
increases due to the deregulation of markets (Britz and Heckelei, 2008). It should be 
stressed that the increase of price risk is a result of the abolishment of price 
protection measures and not a result of international trade. Based on our analysis we 
conjecture that price volatility in the EU would be even higher without a 
participation in international food markets. Nevertheless, global diversification 
cannot completely reduce yield risks. A shortfall, such as in 2007, is not a once in a 
lifetime event. From a statistical point of view, similar production conditions will 
occur every 15 years ceteris paribus. 
However, a word of caution is necessary when interpreting our statistical findings. 
Our results do not allow for predictions about the scarcity of wheat (and hence price 
peaks) because the demand side was not taken into account. Clearly, the demand for 
wheat varies depending on population growth, income and the demand for biofuels. 
Furthermore, even our analysis of the supply side of the wheat market was 
incomplete since only eight countries were considered instead of all wheat producing 
countries. Moreover, the production of only a single year was analysed, ruling out 
time diversification. Usually food markets are short in supply if multiple poor 
harvests occur in a row and worldwide inventories are too small for smoothing this 
shortfall. This was the case in 2007/08. It should also be mentioned that our 
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probability statements refer to the yield level at the end of the observation period. An 
increase of the yield levels due to future technological progress has not been 
anticipated. Finally, one should recall that the production area depends on prices and 
thus is endogenous. For example, one could observe that farmers increased the 
acreage of wheat worldwide in 2008 as a response to the preceding price boom. 
Some of the aforementioned aspects could be handled in the framework of market 
equilibrium models. A linkage of existing market models with the presented 
stochastic analysis is a promising task for further research. 
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Fig. A1. Harvest area of wheat (million hectares) 
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Table A1. Ranking of detrended per hectare yield of wheat (dt/hectare)  

Rank
Canada China France Germany India Pakistan Turkey USA Total 
Yield Year Yield Year Yield Year Yield Year Yield Year Yield Year Yield Year Yield Year Yield Year 

1 6.13 1988 0.56 1977 14.85 2007 20.92 2003 4.66 2006 5.32 1987 8.68 1973 13.48 2002 9.39 2002 
2 7.52 1961 1.67 2002 18.96 2003 21.35 2007 4.96 2005 5.62 1966 8.90 2007 15.05 2006 9.43 2007 
3 8.97 2002 2.19 1980 20.73 2006 23.59 1976 5.03 2007 5.73 1984 8.97 1999 15.13 1989 10.13 2003 
4 10.32 2001 2.34 2003 22.35 1976 24.80 2006 5.26 1980 5.74 1967 8.99 1994 15.13 1974 10.16 2006 
5 10.85 1984 2.78 1973 23.36 1966 26.04 2002 5.50 1974 5.90 1994 9.08 1974 15.65 1991 10.20 1974 
6 11.68 1989 2.85 2001 24.23 1961 26.75 1977 5.86 1964 6.31 1997 9.09 1961 15.70 1995 10.20 1977 
7 11.86 1967 3.05 2000 24.26 2005 27.05 1966 5.88 1966 6.35 1996 9.28 1970 15.72 2007 10.36 2001 
8 11.91 1974 3.48 1978 24.41 1975 27.28 1992 6.00 2003 6.42 2002 9.56 2001 15.77 1996 10.50 1961 
9 12.19 1985 3.48 1981 24.71 2001 27.43 1989 6.00 1967 6.44 1978 9.58 2003 15.90 1967 10.66 1970 
10 12.23 1979 3.55 1970 24.82 1963 27.44 1980 6.21 1977 6.56 1991 9.61 1968 16.07 1961 10.75 1980 
11 12.73 2007 3.67 1974 25.12 1970 27.80 1970 6.56 2004 6.64 1985 9.67 1965 16.27 1988 10.80 2005 
12 12.88 1980 3.81 1969 25.89 1977 27.80 1981 6.66 1978 6.67 1988 9.73 1964 16.46 1963 10.82 1988 
13 12.92 1964 3.91 1971 27.75 1969 28.10 1965 6.68 1975 6.68 1999 9.94 2002 16.46 1966 10.87 1973 
14 12.98 2003 4.01 1972 28.46 1971 28.48 1975 6.72 1987 6.74 2004 10.01 1995 16.56 1962 11.08 1978 
15 13.07 1997 4.02 2005 28.60 1983 28.49 2005 6.73 1981 6.79 1990 10.04 1989 16.61 1964 11.17 1964 
16 13.26 1968 4.07 1975 28.68 1986 28.57 1961 6.86 1982 6.82 1993 10.13 1969 16.68 1976 11.22 1975 
17 13.35 1987 4.28 1998 28.69 1964 28.81 1972 6.93 1976 6.88 1971 10.29 1997 16.69 1977 11.28 1994 
18 13.75 1994 4.55 1976 28.74 1987 28.87 1979 6.97 1973 7.05 1965 10.38 1996 16.87 1965 11.29 1967 
19 13.96 1962 4.59 1991 28.77 1965 28.99 1983 6.97 1963 7.11 1964 10.55 1962 16.95 1978 11.30 1989 
20 14.11 1998 4.66 2004 28.96 1997 30.38 1982 7.07 1979 7.28 2003 10.69 1966 17.01 1986 11.51 1969 
21 14.14 1973 4.99 1968 29.32 1979 30.46 1969 7.10 1988 7.34 1974 10.85 1967 17.14 1975 11.53 1976 
22 14.29 1972 5.21 1994 29.52 1981 30.47 1987 7.15 1998 7.35 1982 11.01 2004 17.15 1994 11.54 1995 
                         
45 17.34 2005 8.65 1983 35.74 1991 36.23 1991 9.12 2000 8.93 1986 13.82 1976 20.37 1971 13.09 1986 
46 17.54 1976 9.32 1997 37.73 1998 36.60 2004 9.32 1995 8.98 2007 13.89 1979 20.41 1984 13.29 1983 
47 17.60 1966 9.44 1984 40.88 1984 36.86 2001 9.56 1997 9.50 2000 14.59 1988 21.09 1983 13.60 1984 

Source: FAO (2009) 
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Table A2. Marginal distributions of wheat yield (dt/hectare) 

Country 
Marginal  
distribution 

Parameters 2  test-statistics p -value 

Canada Logistic 
location 0.0243

2.1910 0.9485 
scale 0.1382

China Weibull 

shape 3.4396

4.5740 0.7117 scale 0.6694

shift -0.6022

Germany Normal 
mean 0.0000

2.8700 0.8966 
SD 0.3895

France Normal 
mean 0.0000

8.6600 0.2780 
SD 0.4975

India Logistic 
location 0.0035

3.5530 0.8296 
scale 0.0690

Pakistan Weibull 

shape 3.4666

3.8940 0.7919 scale 0.3160

shift -0.2842

Turkey Weibull 

shape 1.7138

5.2550 0.6288 scale 0.3280

shift -0.2934

USA Weibull 

shape 3.7793

4.5740 0.7117 scale 0.6087

shift -0.5498
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