403 research outputs found

    Energy-Efficient Transmission Schedule for Delay-Limited Bursty Data Arrivals under Non-Ideal Circuit Power Consumption

    Full text link
    This paper develops a novel approach to obtaining energy-efficient transmission schedules for delay-limited bursty data arrivals under non-ideal circuit power consumption. Assuming a-prior knowledge of packet arrivals, deadlines and channel realizations, we show that the problem can be formulated as a convex program. For both time-invariant and time-varying fading channels, it is revealed that the optimal transmission between any two consecutive channel or data state changing instants, termed epoch, can only take one of the three strategies: (i) no transmission, (ii) transmission with an energy-efficiency (EE) maximizing rate over part of the epoch, or (iii) transmission with a rate greater than the EE-maximizing rate over the whole epoch. Based on this specific structure, efficient algorithms are then developed to find the optimal policies that minimize the total energy consumption with a low computational complexity. The proposed approach can provide the optimal benchmarks for practical schemes designed for transmissions of delay-limited data arrivals, and can be employed to develop efficient online scheduling schemes which require only causal knowledge of data arrivals and deadline requirements.Comment: 30 pages, 7 figure

    An Android-Based Mechanism for Energy Efficient Localization Depending on Indoor/Outdoor Context

    Get PDF
    Today, there is widespread use of mobile applications that take advantage of a user\u27s location. Popular usages of location information include geotagging on social media websites, driver assistance and navigation, and querying nearby locations of interest. However, the average user may not realize the high energy costs of using location services (namely the GPS) or may not make smart decisions regarding when to enable or disable location services-for example, when indoors. As a result, a mechanism that can make these decisions on the user\u27s behalf can significantly improve a smartphone\u27s battery life. In this paper, we present an energy consumption analysis of the localization methods available on modern Android smartphones and propose the addition of an indoor localization mechanism that can be triggered depending on whether a user is detected to be indoors or outdoors. Based on our energy analysis and implementation of our proposed system, we provide experimental results-monitoring battery life over time-and show that an indoor localization method triggered by indoor or outdoor context can improve smartphone battery life and, potentially, location accuracy

    RSA: Byzantine-Robust Stochastic Aggregation Methods for Distributed Learning from Heterogeneous Datasets

    Full text link
    In this paper, we propose a class of robust stochastic subgradient methods for distributed learning from heterogeneous datasets at presence of an unknown number of Byzantine workers. The Byzantine workers, during the learning process, may send arbitrary incorrect messages to the master due to data corruptions, communication failures or malicious attacks, and consequently bias the learned model. The key to the proposed methods is a regularization term incorporated with the objective function so as to robustify the learning task and mitigate the negative effects of Byzantine attacks. The resultant subgradient-based algorithms are termed Byzantine-Robust Stochastic Aggregation methods, justifying our acronym RSA used henceforth. In contrast to most of the existing algorithms, RSA does not rely on the assumption that the data are independent and identically distributed (i.i.d.) on the workers, and hence fits for a wider class of applications. Theoretically, we show that: i) RSA converges to a near-optimal solution with the learning error dependent on the number of Byzantine workers; ii) the convergence rate of RSA under Byzantine attacks is the same as that of the stochastic gradient descent method, which is free of Byzantine attacks. Numerically, experiments on real dataset corroborate the competitive performance of RSA and a complexity reduction compared to the state-of-the-art alternatives.Comment: To appear in AAAI 201

    Temporal Sentence Grounding in Videos: A Survey and Future Directions

    Full text link
    Temporal sentence grounding in videos (TSGV), \aka natural language video localization (NLVL) or video moment retrieval (VMR), aims to retrieve a temporal moment that semantically corresponds to a language query from an untrimmed video. Connecting computer vision and natural language, TSGV has drawn significant attention from researchers in both communities. This survey attempts to provide a summary of fundamental concepts in TSGV and current research status, as well as future research directions. As the background, we present a common structure of functional components in TSGV, in a tutorial style: from feature extraction from raw video and language query, to answer prediction of the target moment. Then we review the techniques for multimodal understanding and interaction, which is the key focus of TSGV for effective alignment between the two modalities. We construct a taxonomy of TSGV techniques and elaborate the methods in different categories with their strengths and weaknesses. Lastly, we discuss issues with the current TSGV research and share our insights about promising research directions.Comment: 29 pages, 32 figures, 9 table

    SEA: A Scalable Entity Alignment System

    Get PDF
    Entity alignment (EA) aims to find equivalent entities in different knowledge graphs (KGs). State-of-the-art EA approaches generally use Graph Neural Networks (GNNs) to encode entities. However, most of them train the models and evaluate the results in a fullbatch fashion, which prohibits EA from being scalable on largescale datasets. To enhance the usability of GNN-based EA models in real-world applications, we present SEA, a scalable entity alignment system that enables to (i) train large-scale GNNs for EA, (ii) speed up the normalization and the evaluation process, and (iii) report clear results for users to estimate different models and parameter settings. SEA can be run on a computer with merely one graphic card. Moreover, SEA encompasses six state-of-the-art EA models and provides access for users to quickly establish and evaluate their own models. Thus, SEA allows users to perform EA without being involved in tedious implementations, such as negative sampling and GPU-accelerated evaluation. With SEA, users can gain a clear view of the model performance. In the demonstration, we show that SEA is user-friendly and is of high scalability even on computers with limited computational resources.Comment: SIGIR'23 Demo Trac

    An Introduction to hpxMP: A Modern OpenMP Implementation Leveraging HPX, An Asynchronous Many-Task System

    Full text link
    Asynchronous Many-task (AMT) runtime systems have gained increasing acceptance in the HPC community due to the performance improvements offered by fine-grained tasking runtime systems. At the same time, C++ standardization efforts are focused on creating higher-level interfaces able to replace OpenMP or OpenACC in modern C++ codes. These higher level functions have been adopted in standards conforming runtime systems such as HPX, giving users the ability to simply utilize fork-join parallelism in their own codes. Despite innovations in runtime systems and standardization efforts users face enormous challenges porting legacy applications. Not only must users port their own codes, but often users rely on highly optimized libraries such as BLAS and LAPACK which use OpenMP for parallization. Current efforts to create smooth migration paths have struggled with these challenges, especially as the threading systems of AMT libraries often compete with the treading system of OpenMP. To overcome these issues, our team has developed hpxMP, an implementation of the OpenMP standard, which utilizes the underlying AMT system to schedule and manage tasks. This approach leverages the C++ interfaces exposed by HPX and allows users to execute their applications on an AMT system without changing their code. In this work, we compare hpxMP with Clang's OpenMP library with four linear algebra benchmarks of the Blaze C++ library. While hpxMP is often not able to reach the same performance, we demonstrate viability for providing a smooth migration for applications but have to be extended to benefit from a more general task based programming model
    • …
    corecore