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ABSTRACT
Entity alignment (EA) aims to find equivalent entities in different
knowledge graphs (KGs). State-of-the-art EA approaches generally
use Graph Neural Networks (GNNs) to encode entities. However,
most of them train the models and evaluate the results in a full-
batch fashion, which prohibits EA from being scalable on large-scale
datasets. To enhance the usability of GNN-based EA models in real-
world applications, we present SEA, a scalable entity alignment
system that enables to (i) train large-scale GNNs for EA, (ii) speed
up the normalization and the evaluation process, and (iii) report
clear results for users to estimate different models and parameter
settings. SEA can be run on a computer with merely one graphic
card. Moreover, SEA encompasses six state-of-the-art EA models
and provides access for users to quickly establish and evaluate their
own models. Thus, SEA allows users to perform EA without being
involved in tedious implementations, such as negative sampling
and GPU-accelerated evaluation. With SEA, users can gain a clear
view of the model performance. In the demonstration, we show that
SEA is user-friendly and is of high scalability even on computers
with limited computational resources.
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• Computing methodologies → Knowledge representation
and reasoning; Semantic networks.
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1 INTRODUCTION
Knowledge graphs (KGs) represent collections of relations between
real-world entities, which facilitates a wide range of downstream
applications, However, KGs constructed from different sources are
highly incomplete [5, 9, 13]. Entity alignment (EA) [13] has been
proposed as a fundamental strategy to complete KGs. Essentially, EA
aligns entities from different KGs that refer to the same real-world
objects, thereby enabling the completion of KGs. Graph Neural Net-
works (GNNs) have attracted significant attention in recent years
and GNN-based entity alignment (EA) has emerged as a promising
approach to address the problem of KG incompleteness [4, 10–
12, 14, 16]. Despite the advances, there remain two main challenges
to be tackled.

The first challenge is how to scale up EA models to process large-
scale datasets. The state-of-the-arts [10, 12] focus primarily on
model design of GNNs, with little attention given to model scal-
ability. Recent open-source EA toolkits (e.g., OpenEA [13] and
EAKit [17]) have not yet provided satisfactory solutions for pro-
cessing large-scale EA. However, the size of real-world KGs is much
larger than that of traditional datasets used in evaluating EAmodels.
For instance, a real-world KG YAGO3 includes 17 million entities [6].

The second challenge is how to deal with geometric problems ef-
fectively. As the size of input KGs increases, some entities tend to
frequently appear as the top-1 nearest neighbors of many other en-
tities, while outliers become isolated from the rest of the graph [5].
These issues are referred to as geometric problems [5, 13] and they
can make it difficult to align entities. Although some normalization
methods have been proposed to address geometric problems, they
are quadratic-time method and thus may still not be feasible for
very large graphs.

To address the limitations of the existing solutions and toolkits,
we develop SEA – a tool aimed at facilitating the design, develop-
ment, and evaluation of EA models. The key contributions of SEA
are summarized as follows.
Large-scale Training. We design a novel solution to enhance the
scalability of existing GNN-based. SEA first constructs mini-batches
based on seed alignment, then it applies neighborhood sampling [7]
on KGs to generate subgraphes, which can be fed into most GNN-
based EAmethods. In this way, SEA allows users to train large-scale
graphs for EA on a single GPU.
Large-scale Inference and Evulation. SEA introduces an infer-
ence module to tackle the geometric problem for large-scale EA.
First, the system partitions the entities set into several groups with

https://doi.org/10.1145/3539618.3591816
https://doi.org/10.1145/3539618.3591816


SIGIR ’23, July 23–27, 2023, Taipei, Taiwan Junyang Wu et al.

Configuration setting

Runtime monitor

Result display

GUI Front End System Back End

Training Large-scale GNN

Construct mini-batch

Large-scale Inference

Generate Group

Sample neighbors

Fuse global similarity

Top-k corresponding

Normalize Group

Figure 1: Architecture of SEA.

high entity equivalence rates and calculates the local similarity
matrix for each group. Next, it normalizes the local matrices and
aggregates them into a global similarity matrix. Moreover, we use
FAISS [8] to create sparse matrices using top-𝑘 correspondence to
speed up the evaluation process.
The Demonstration of SEA. SEA offers a suite of visualization
tools to help users establish EA tasks and gain insights into the
alignment process. It integrates six GNN-based models, including
both the classic models [4, 14, 16] and the state-of-the-art mod-
els [10–12], making it easy for users to establish EA tasks. In addi-
tion, users can customize their GNN models flexibly using Pytorch
and Deep Graph Library (DGL) [15]. The intuitive visualization
interface of SEA allows users to select models and datasets, explore
performance at the entity level, and compare different settings.
We have created a demonstration video that can be accessed at
https://github.com/Immortals88/Demo-SEA.

2 SYSTEM OVERVIEW
Figure 1 shows the architecture of SEA. SEA consists of a front end
with a GUI for users and a back end that manages the EA process.
The front end of the system allows users to configure EA settings,
monitor the entire training process, and visualize and inspect the
final EA results. The back end of the system is composed of two
modules responsible for the training, inference, and evaluation of
the EA process. These modules collaborate to facilitate EA across
different knowledge graphs. To ease the understanding of SEA,
we first introduce important preliminaries related to the entity
alignment process, and then we present a detailed workflow that
illustrates how users can utilize the system to perform EA.

2.1 Preliminaries
A knowledge graph (KG) is denoted as 𝐺 = (𝐸, 𝑅,𝑇 ), where 𝐸 is
the set of entities , 𝑅 is the set of relations, and𝑇 = {(ℎ, 𝑟, 𝑡) | ℎ, 𝑡 ∈
𝐸, 𝑟 ∈ 𝑅} is the set of triples, each of which represents an edge
between the head entity ℎ to the tail entity 𝑡 with the relation 𝑟 .
Entity alignment (EA) aims to find the 1-to-1 mapping of entities
𝜙 from a source KG𝐺𝑠 = (𝐸𝑠 , 𝑅𝑠 ,𝑇𝑠 ) to a target KG𝐺𝑡 = (𝐸𝑡 , 𝑅𝑡 ,𝑇𝑡 ).
𝜙 = {(𝑒𝑠 , 𝑒𝑡 ) ∈ 𝐸𝑠 × 𝐸𝑡 | 𝑒𝑠 ≡ 𝑒𝑡 }, where 𝑒𝑠 ∈ 𝐸𝑠 , 𝑒𝑡 ∈ 𝐸𝑡 , and ≡ is
an equivalence relation between 𝑒𝑠 and 𝑒𝑡 . In most cases, a small
set of equivalent entities 𝜙 ′ ⊂ 𝜙 is known beforehand and is used
as seed alignment.
GNN-based EA takes two KGs:𝐺𝑠 ,𝐺𝑡 and the seed alignment𝜙 ′ as
input, and it uses graph neural networks (GNN) to (i) learn a set of
embeddings for all entities 𝐸𝑠 and 𝐸𝑡 , denoted as f ∈ R ( |𝐸𝑠 |+|𝐸𝑡 | )×𝐷 ,
where 𝐷 is the dimension of embedding vectors, and (ii) maximize
the similarity (e.g. cosine similarity) of entities that are equivalent
in 𝜙 ′.

GNN Model

Mini-batch 

Construction

Seed Entity

Other Entity

Sampled Neighbor

 Es Et  

Neighborhood

Sampling

Seed Alignment

Input to

Embedding

Alignment Module

(Loss Function)

Figure 2: Training large-scale GNNs.

2.2 Training large-scale GNNs for EA
GNN-based EA approaches have dominated the EA tasks with
promising performances by propagating the information of seed
alignments to their neighbors. Formally, the embedding ℎ (𝑘 )𝑣 of an
entity 𝑣 ∈ 𝐸 in the 𝑘𝑡ℎ layer of GNN is obtained by aggregating lo-
calized information via 𝑎 (𝑘 )𝑣 = Aggregate(𝑘 ) ({ℎ (𝑘−1)𝑢 | 𝑢 ∈ N (𝑣)})
and ℎ (𝑘 )𝑣 = Update(𝑘 ) (𝑎 (𝑘 )𝑣 , ℎ

(𝑘−1)
𝑣 ). Where ℎ (0)𝑣 ∈ R𝐷 is a learn-

able embedding vector initialized randomly or generated with some
language models. N(𝑣) represents the set of neighboring entities
around 𝑣 . The model’s final output on entity 𝑒 is denoted as f𝑒 .

Most GNN-based EA approaches train their models in a whole
graph manner. It is no longer feasible when the KGs become large.
Since the storage of the entity embeddings and graph structure may
exceed the memory capacity. To address this issue, SEA provides a
general workflow for training a Siamese GNN on large graphs: (i)
constructs mini-batch of entities; and (ii) samples neighborhoods in
each mini-batch as a subgraph for GNN information propagation
as depicted in Figures 2.
Mini-batch Construction. To scale up the existing GNN-based EA
models, SEA trains these models with neighborhood sampling strat-
egy [7]. Before we start to sample subgraph, we need to construct a
bunch of entities, called mini-batch, as starting points to kick off the
sampling process. Each mini-batch should keep the same setting as
the whole entity set. Specifically, SEA first randomly selects a set of
entities from the seed alignment that are equivalent. Next, it picks
negative nodes from the entire entity set that do not overlap with
seed entities. Finally, a mini-batch consisting of these two parts
(positive and negative entities) is generated as shown in Figures 2.
Neighborhood Sampling.

In SEA, the entire graph information is stored in CPU memory.
When a mini-batch is generated, SEA samples the 𝑘-hop neighbor-
hoods for each entity in the mini-batch to form a subgraph. The
hop number 𝑘 is determined by the number of layers defined in
GNN models. By controlling the size of the mini-batch, the hop
number, and the fan-out (i.e. maximum sampled neighbors) for
each node, the resulting subgraph is guaranteed to be small enough
to fit in GPU memory. The subgraph and the embeddings of the
involved entities are then shifted to the GPU for GNN training. This
significantly reduces the GPU memory cost, making it possible to
train large-scale inputs (e.g., DBP1M [6]).
Model Training and Loss Functions. The GNN models used
in SEA take the sampled subgraphs as input and generates the
embedding of the entities in the mini-batch as output. The loss
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Figure 3: The Graphic User Interface of SEA.

function is designed to encourage the embeddings of equivalent
entities to be close together while keeping non-equivalent entities
far apart. This allows us to measure the distance between entities
and identify potential alignments. In SEA, we implement multiple
GNNmodels (cf. Section 2.4) and two commonly used loss functions:
the triplet loss [16] and the normalized hard sample mining loss [10].
Note that the users can define their own loss functions.

2.3 Large-scale Inference
After obtaining the KG embeddings, we can get the similarity matrix
by measuring the distances between them. However, as the size
of KGs grows, the geometric problems become more severe [5].
Many existing studies [5, 9, 13] use normalization methods on the
similarity matrix to alleviate the geometric problems. But they have
at least quadratic time complexity. To solve the problem, SEA first
groups entities that have a high likelihood of being equivalent
together, and computes the local similarity matrix within each
group. Next, SEA uses FAISS with GPU acceleration to calculate
the top-𝑘 correspondences, which are then used to form a global
sparse similarity matrix. Finally, SEA normalizes the local similarity
matrices and merges them with the global sparse similarity matrix
to find the alignment, greatly reducing the time complexity.

Maintaining performance while reducing complexity poses two
challenges: (i) generating groups with a high entity equivalence
rate to ensure a 1-to-1 mapping, and (ii) merging the local similarity
matrices to ensure overall accuracy. To address these challenges, in
SEA’s inference stage, we adopt our previous work, ClusterEA [5].
ClusterEA trains a classifier to group entities with a high equivalent
rate and proposes a SparseFusion method to normalize the global
similarity matrix effectively and efficiently.

SEA offers two types of evaluation metrics to assess the perfor-
mance of EA: (i) the Hits-𝑘 metric (H@𝑘), indicating whether the
ground truth appears in top-𝑘 ranking; and (ii) the Mean reciprocal
rank (MRR), indicating the average of the reciprocal rank of the
ground truth.

2.4 Models and Dataset
Models. In SEA, we implement the stochastic training of six GNN-
based EAmodels usingDGL [15]. Thesemodels are (i)GCNAlign [16],
the first GNN-based EAmodel; (ii)GAT [14], a common GNNmodel
that introduces attention technique and has been used as a building
block in many recent approaches [9, 10]; (iii) MRAEA [11], a GNN-
based EA model that models entity embeddings by integrating the
node’s incoming and outgoing neighbors and the connected rela-
tions’ meta semantics; (iv)MuGNN [4], a GNN-based EAmodel that
utilizes multi-channel information to align entities across different
knowledge graphs; (v) RREA [12], a GNN-based EA model that
leverages relational reflection transformation to obtain relation-
specific embeddings for each entity; and (vi) Dual-AMN [10], an
EA model that encompasses two attention layers to model both
intra-graph and cross-graph relations.
Datasets. SEA has built-in support for five commonly used real-
world datasets: DBP15K [3], DWY100K [3], SRPRS [3], IDS [3], and
a large-scale dataset DBP1M [2].

3 DEMONSTRATION
SEA is a cross-platform application that utilizes PyTorch for its back-
end logic and Qt for its graphic user interface. Its basic interface,
shown in Figure 3, includes functionalities such as hyperparameter
configuration, EA model training, alignment results evaluation, and
visualization. This demonstration serves to showcase the SEA.
Hyper-parameter Configuration. SEA offers support for six real-
world datasets commonly used in EA (cf. Section 2.4). Users can
either choose one of the supported datasets or load a local dataset.
Then, SEA checks the input format for compatibility upon loading.
Once the dataset is loaded, users are required to select an EA model
for training and to set the corresponding hyper-parameters through
interface No.1, as shown in Figure 3. To simplify the process, some
suggested hyperparameters are pre-filled based on the selected
model and dataset, eliminating the need for non-experts tomanually
tune them.
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1 class SimpleGCN(nn.Module):

2 def __init__(self , in_feats , out_feats):

3 super(SimpleGCN , self).__init__ ()

4 self.conv = dgl.nn.GraphConv(in_feats , out_feats ,

5 norm='none', weight=True , bias=True)

6 xavier_normal_(self.conv.weight)

7 zeros_(self.conv.bias)

8 def forward(self , blocks):

9 in_feats = blocks [0]. srcdata['feature ']

10 edge_weight = blocks [0]. edata['weight ']

11 h = self.conv(blocks [0], in_feats ,

12 edge_weight=edge_weight)

13 return h

Figure 4: An example code of implementing a one-layer GCN
for the EA task in SEA.

The hyper-parameters in SEA are divided into two parts: (i)
Shared hyperparameters, which must be specified by all EA models,
such as learning rate, loss functions, model layer number, and train-
ing epochs; and (ii) Model-specific parameters, which must be set
specifically for the selected model, such as the number of attention
heads in Graph Attention Network (GAT) related approaches.
User-definedGNNmodels. SEA provides the ability to implement
new GNN models for EA. Users can define their own GNN models,
as depicted in Figure 4. To define a new model, a user only needs
to follow the guideline of PyTorch and DGL [15] to inherit the
torch.nn.Module class and implement two methods: __init__() that
constructs the model and forward(blocks) that takes a list of sampled
subgraph as input and outputs the node embedding of its destination
nodes. The input of the forward function is a series of DGLBlocks [1]
representing the sampled subgraph, where each one yields the node
feature and edge weights of its layer. The model design is similar
to building a model for node classification tasks, which simplifies
the task for users by eliminating the need to implement tedious
procedures.
Training of EAmodel. Once the parameters has been set, the user
can initiate the EA task by clicking the "Run!" button. The training
process, as outlined in Section 2.2, is fully parallelized on the GPU.
SEA offers real-time tracking of the training loss and prediction
accuracy(cf. No.2 in Figure 3). Users can further enhance tracking
by integrating other visualization tools such as TensorBoard.
Results Evaluation & Visualization. When the EA process is
completed, the system proceeds to the alignment results visualiza-
tion stage, which contains two parts: align result visualization and
graph data visualization, as shown in Figures 3 and 5, respectively.

For the align result visualization, we provide basic evaluated
information including H@1, H@10 and MRR generated by our
large-scale evaluation unit. To facilitate the interpretability of EA
models, SEA depicts the EA results in the form of lists. Entities in
set 𝐸𝑠 are shown in a list on the left-hand side. If we click one entity
in the list, SEA will show the top-10 corresponding entities in 𝐸𝑡
produced by the EA model, with the ground truth highlighted (if
any). If the entity is properly aligned, it is shown in black. If the
top-10 correspondences include the ground truth (but not as the
top choice), the entity is shown in green. If the ground truth is not
found in the top-10 correspondences, the entity is shown in red.
Several options are provided to re-arrange the list as depicted in
Figure 3, No.2. In particular, users can switch the source and target
and prioritize the erroneous entities. Moreover, SEA maintains a

I_Don't_…I_Don't_…

Mariah_…Mariah_…

Mariah_…Mariah_…

Crybaby…Crybaby…

Mariah_…Mariah_…

Someda…Someda…

Someda…Someda…

Mariah_…Mariah_…

Crybaby…Crybaby…

(a) graph structure

(b) train pairs (c) test pairs

Figure 5: Graph data visualization.

class for each entity, which includes the entity’s name, its neigh-
bors, the ground truth, and a list of candidate entities generated by
the model. This means users can write their own queries to select
specific entities they wish to examine. As described in Section 2.3,
we have proposed an inference method to address geometric prob-
lems. By clicking the "inference" checkbox, users can observe the
effectiveness of this module. If the box is not checked, SEA will
identify the nearest neighbor for each entity in a naive way. This
leads to a drop of 20% in Hits@1 for almost all settings.

For the graph data visualization, SEA provides visualization tools
for both KG structure and entity embeddings. To depict the two KGs
and their alignment, we have integrated SEA with Neo4j, as shown
in Figure 5(a). The nodes of the two graphs are paintedwith different
colors (orange for EN and blue for FR in this example). The top-10
alignment produced by the EA model is added as edges (MODEL)
between graphs, along with the ground truth edges (ILL). Users
can utilize Cypher Query Language to explore the aligned result in
more detail. As for embedding visualization, we use a dimension
reduction method TSNE to project embedding vectors to 2D points,
where the distance between points reflects their distance in the
high-dimensional space. Figure 5(b) shows that the embeddings of
the training data are highly aligned, while the test pairs have some
minor errors. By exploring the embedding visualization, users can
gain more insight into the EA process.
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