39 research outputs found

    Supramolecular Side-Chain Poly[2]pseudorotaxanes Formed by Orthogonal Coordination-Driven Self-Assembly and Crown-Ether-Based Host–Guest Interactions

    No full text
    The themes of coordination-driven self-assembly, host–guest interactions, and supramolecular polymerization are unified in an orthogonal noninterfering fashion to deliver side-chain poly[2]­pseudorotaxanes. Specifically, a bis­(<i>p</i>-phenylene)-34-crown-10 derivative <b>1</b> bearing two pyridyl groups polymerizes into a side-chain poly[2]­pseudorotaxane upon the addition of di-Pt­(II) acceptor <b>4</b> in the presence of paraquat. Interestingly, by adding a competitive guest <b>3</b>, the poly[2]­pseudorotaxane can realize a conversion in one pot

    Supramolecular Side-Chain Poly[2]pseudorotaxanes Formed by Orthogonal Coordination-Driven Self-Assembly and Crown-Ether-Based Host–Guest Interactions

    No full text
    The themes of coordination-driven self-assembly, host–guest interactions, and supramolecular polymerization are unified in an orthogonal noninterfering fashion to deliver side-chain poly[2]­pseudorotaxanes. Specifically, a bis­(<i>p</i>-phenylene)-34-crown-10 derivative <b>1</b> bearing two pyridyl groups polymerizes into a side-chain poly[2]­pseudorotaxane upon the addition of di-Pt­(II) acceptor <b>4</b> in the presence of paraquat. Interestingly, by adding a competitive guest <b>3</b>, the poly[2]­pseudorotaxane can realize a conversion in one pot

    Chemically-Responsive Complexation of A Diquaternary Salt with Bis(<i>m</i>‑phenylene)-32-Crown-10 Derivatives and Host Substituent Effect on Complexation Geometry

    No full text
    A chemically responsive diquaternary salt with π-extended surface was made. The host–guest complexation with chemo-responsiveness between three bis(<i>m</i>-phenylene)-32-crown-10 (BMP32C10) derivatives and this diquaternary salt guest was studied through the sequential addition of basic and acidic reagents (diethylamine and trifluoroacetic acid, respectively). Furthermore, the host-substituent effect on the complexation geometries of these three host–guest complexes, from taco to taco-type threaded to threaded structures by changing the substituent on BMP32C10 as shown by crystal structures, was also addressed

    Introgressing subgenome components from Brassica rapa and B. carinata to B. juncea for broadening its genetic base and exploring intersubgenomic heterosis

    No full text
    Brassica juncea (AjAjBjBj), is an allotetraploid that arose from two diploid species, B. rapa (ArAr) and B. nigra (BnBn). It is an old oilseed crop with unique favorable traits, but the genetic improvement on this species is limited. We developed an approach to broaden its genetic base within several generations by intensive selection. The Ar subgenome from the Asian oil crop B. rapa (ArAr) and the Bc subgenome from the African oil crop B. carinata (BcBcCcCc) were combined in a synthesized allohexaploid (ArArBcBcCcCc), which was crossed with traditional B. juncea to generate pentaploid F1 hybrids (ArAjBcBjCc), with subsequent self-pollination to obtain newly synthesized B. juncea (Ar/jAr/jBc/jBc/j). After intensive cytological screening and phenotypic selection of fertility and agronomic traits, a population of new-type B. juncea was obtained and was found to be genetically stable at the F6 generation. The new-type B. juncea possesses good fertility and rich genetic diversity and is distinctly divergent but not isolated from traditional B. juncea, as revealed by population genetic analysis with molecular markers. More than half of its genome was modified, showing exotic introgression and novel variation. In addition to the improvement in some traits of the new-type B. juncea lines, a considerable potential for heterosis was observed in inter-subgenomic hybrids between new-type B. juncea lines and traditional B. juncea accessions. The new-type B. juncea exhibited a stable chromosome number and a novel genome composition through multiple generations, providing insight into how to significantly broaden the genetic base of crops with subgenome introgression from their related species and the potential of exploring inter-subgenomic heterosis for hybrid breeding

    Chemically-Responsive Complexation of A Diquaternary Salt with Bis(<i>m</i>‑phenylene)-32-Crown-10 Derivatives and Host Substituent Effect on Complexation Geometry

    No full text
    A chemically responsive diquaternary salt with π-extended surface was made. The host–guest complexation with chemo-responsiveness between three bis(<i>m</i>-phenylene)-32-crown-10 (BMP32C10) derivatives and this diquaternary salt guest was studied through the sequential addition of basic and acidic reagents (diethylamine and trifluoroacetic acid, respectively). Furthermore, the host-substituent effect on the complexation geometries of these three host–guest complexes, from taco to taco-type threaded to threaded structures by changing the substituent on BMP32C10 as shown by crystal structures, was also addressed

    Achieving <i>In Situ</i> Dynamic Fluorescence in the Solid State through Synergizing Cavities of Macrocycle and Channels of Framework

    No full text
    To achieve in situ dynamic fluorescence in the solid state and unveil the mechanism remain a formidable challenge. Herein, through synergizing the cavities of macrocycles for dynamic complexing and the channels of frameworks for facile transit, we construct intrinsic channels from an emissive cyclophane and realize precisely tunable emission in the solid state through the sequential guests’ exchange. Specifically, two design criteria involve (1) The twisted cyanostilbene units not only endow the systems with solid-state fluorescence but also tailor the π–π interactions in the complex to generate the desired emission and (2) the large cavity of cyclophane results in the formation of ternary complexes with controllable binding affinity which further assemble into robust channels for the guests’ exchange in the bulky state. This strategy unifies the advantages of both macrocycle and framework in one system, achieving visualization, recyclability, and easy processability simultaneously. The present study paves an easy, efficient, and general platform for constructing dynamic optical materials

    Efficient Degradation of Printing and Dyeing Wastewater by Lotus Leaf-Based Nitrogen Self-Doped Mesoporous Biochar Activated Persulfate: Synergistic Mechanism of Adsorption and Catalysis

    No full text
    The discharge of printing and dyeing wastewater has been increasing, causing serious environmental pollution with the rapid development of the industry. Based on this, an N self-doped mesoporous lotus leaf biochar (LLC800) was prepared from lotus leaves as raw material for the activation of Persulfate (PS) to degrade wastewater from printing and dyeing. The removal rate of AO7 by PS, LLC800 and LLC800/PS systems were 0.84%, 31.11% and 99.46%, respectively. Electron paramagnetic resonance spectroscopy (EPR) and quench tests showed the presence of free radicals (•OH, SO4●− and O2●−) and nonradical (1O2) in the LLC800/PS system, where nonradicals (1O2) play an important role in the degradation of AO7. The “N self-doped” effect formed by the high N content of lotus leaves is the main factor leading to the high adsorption and catalytic performance of lotus leaf biochar. The effect of pyrolysis temperature on the performance of biochar can be attributed to the change of N content and conformation and specific surface area in biochar. Moreover, the LLC800/PS system has a strong resistance to interference. This work can provide technical support for the preparation of high-performance adsorption-catalytic biochar and the development of high-performance activation materials for persulfate

    Achieving <i>In Situ</i> Dynamic Fluorescence in the Solid State through Synergizing Cavities of Macrocycle and Channels of Framework

    No full text
    To achieve in situ dynamic fluorescence in the solid state and unveil the mechanism remain a formidable challenge. Herein, through synergizing the cavities of macrocycles for dynamic complexing and the channels of frameworks for facile transit, we construct intrinsic channels from an emissive cyclophane and realize precisely tunable emission in the solid state through the sequential guests’ exchange. Specifically, two design criteria involve (1) The twisted cyanostilbene units not only endow the systems with solid-state fluorescence but also tailor the π–π interactions in the complex to generate the desired emission and (2) the large cavity of cyclophane results in the formation of ternary complexes with controllable binding affinity which further assemble into robust channels for the guests’ exchange in the bulky state. This strategy unifies the advantages of both macrocycle and framework in one system, achieving visualization, recyclability, and easy processability simultaneously. The present study paves an easy, efficient, and general platform for constructing dynamic optical materials
    corecore