209 research outputs found

    Incompatible Magnetic Order in Multiferroic Hexagonal DyMnO3

    Full text link
    Magnetic order of the manganese and rare-earth lattices according to different symmetry representations is observed in multiferroic hexagonal (h-) DyMnO3_3 by optical second harmonic generation and neutron diffraction. The incompatibility reveals that the 3d-4f coupling in the h-RRMnO3_3 system (RR = Sc, Y, In, Dy - Lu) is substantially less developed than commonly expected. As a consequence, magnetoelectric coupling effects in this type of split-order parameter multiferroic that were previously assigned to a pronounced 3d-4f coupling have now to be scrutinized with respect to their origin

    Continuous lasing for perovskites

    Get PDF
    Optically generated local phase changes in methylammonium lead iodide produce a transient quantum well structure with robust optical gain. The result is a perovskite laser that supports continuous-wave lasing under optical pumping.PostprintNon peer reviewe

    Preparation of Single-Phase Films of CH3NH3Pb(I1-xBrx)3 with Sharp Optical Band Edges.

    Get PDF
    Organometallic lead-halide perovskite-based solar cells now approach 18% efficiency. Introducing a mixture of bromide and iodide in the halide composition allows tuning of the optical bandgap. We prepare mixed bromide-iodide lead perovskite films CH3NH3Pb(I1-xBrx)3 (0 ≤ x ≤ 1) by spin-coating from solution and obtain films with monotonically varying bandgaps across the full composition range. Photothermal deflection spectroscopy, photoluminescence, and X-ray diffraction show that following suitable fabrication protocols these mixed lead-halide perovskite films form a single phase. The optical absorption edge of the pure triiodide and tribromide perovskites is sharp with Urbach energies of 15 and 23 meV, respectively, and reaches a maximum of 90 meV for CH3NH3PbI1.2Br1.8. We demonstrate a bromide-iodide lead perovskite film (CH3NH3PbI1.2Br1.8) with an optical bandgap of 1.94 eV, which is optimal for tandem cells of these materials with crystalline silicon devices.We acknowledge funding from the Engineering and Physical Sciences Research Council (EPSRC) and the Winton Programme (Cambridge) for the Physics of Sustainability. THT acknowledges funding from Cambridge Australia Scholarships and the Cambridge Commonwealth Trust. D.C. acknowledges support from St. John's College Cambridge and the Winton Programme (Cambridge) for the Physics of Sustainability.This is the final published version. It's also available at: http://pubs.acs.org/doi/abs/10.1021/jz501332v

    Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites

    Get PDF
    Solar cells based on the organic-inorganic tri-halide perovskite family of materials have shown remarkable progress recently, offering the prospect of low-cost solar energy from devices that are very simple to process. Fundamental to understanding the operation of these devices is the exciton binding energy, which has proved both difficult to measure directly and controversial. We demonstrate that by using very high magnetic fields it is possible to make an accurate and direct spectroscopic measurement of the exciton binding energy, which we find to be only 16 meV at low temperatures, over three times smaller than has been previously assumed. In the room temperature phase we show that the binding energy falls to even smaller values of only a few millielectronvolts, which explains their excellent device performance due to spontaneous free carrier generation following light absorption. Additionally, we determine the excitonic reduced effective mass to be 0.104me (where me is the electron mass), significantly smaller than previously estimated experimentally but in good agreement with recent calculations. Our work provides crucial information about the photophysics of these materials, which will in turn allow improved optoelectronic device operation and better understanding of their electronic properties

    Highly efficient and stable inverted perovskite solar cell employing PEDOT:GO composite layer as a hole transport layer

    Get PDF
    The beneficial use of a hole transport layer (HTL) as a substitution for poly(3,4-ethlyenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) is regarded as one of the most important approaches for improving the stability and efficiency of inverted perovskite solar cells. Here, we demonstrate highly efficient and stable inverted perovskite solar cells by applying a GO-doped PEDOT:PSS (PEDOT:GO) film as an HTL. The high performance of this solar cell stems from the excellent optical and electrical properties of the PEDOT:GO film, including a higher electrical conductivity, a higher work function related to the reduced contact barrier between the perovskite layer and the PEDOT:GO layer, enhanced crystallinity of the perovskite crystal, and suppressed leakage current. Moreover, the device with the PEDOT:GO layer showed excellent long-term stability in ambient air conditions. Thus, the enhancement in the efficiency and the excellent stability of inverted perovskite solar cells are promising for the eventual commercialization of perovskite optoelectronic devices

    Charge carrier recombination channels in the low-temperature phase of organic-inorganic lead halide perovskite thin films

    No full text
    The optoelectronic properties of the mixed hybrid lead halide perovskite CH3NH3PbI3-xClx have been subject to numerous recent studies related to its extraordinary capabilities as an absorber material in thin film solar cells. While the greatest part of the current research concentrates on the behavior of the perovskite at room temperature, the observed influence of phonon-coupling and excitonic effects on charge carrier dynamics suggests that low-temperature phenomena can give valuable additional insights into the underlying physics. Here, we present a temperature-dependent study of optical absorption and photoluminescence (PL) emission of vapor-deposited CH3NH3PbI3-xCl x exploring the nature of recombination channels in the room- and the low-temperature phase of the material. On cooling, we identify an up-shift of the absorption onset by about 0.1 eV at about 100 K, which is likely to correspond to the known tetragonal-to-orthorhombic transition of the pure halide CH3NH3PbI3. With further decreasing temperature, a second PL emission peak emerges in addition to the peak from the room-temperature phase. The transition on heating is found to occur at about 140 K, i.e., revealing significant hysteresis in the system. While PL decay lifetimes are found to be independent of temperature above the transition, significantly accelerated recombination is observed in the low-temperature phase. Our data suggest that small inclusions of domains adopting the room-temperature phase are responsible for this behavior rather than a spontaneous increase in the intrinsic rate constants. These observations show that even sparse lower-energy sites can have a strong impact on material performance, acting as charge recombination centres that may detrimentally affect photovoltaic performance but that may also prove useful for optoelectronic applications such as lasing by enhancing population inversion. © 2014 Author(s)

    Charge carrier recombination channels in the low-temperature phase of organic-inorganic lead halide perovskite thin films

    No full text
    The optoelectronic properties of the mixed hybrid lead halide perovskite CH3NH3PbI3-xClx have been subject to numerous recent studies related to its extraordinary capabilities as an absorber material in thin film solar cells. While the greatest part of the current research concentrates on the behavior of the perovskite at room temperature, the observed influence of phonon-coupling and excitonic effects on charge carrier dynamics suggests that low-temperature phenomena can give valuable additional insights into the underlying physics. Here, we present a temperature-dependent study of optical absorption and photoluminescence (PL) emission of vapor-deposited CH3NH3PbI3-xCl x exploring the nature of recombination channels in the room- and the low-temperature phase of the material. On cooling, we identify an up-shift of the absorption onset by about 0.1 eV at about 100 K, which is likely to correspond to the known tetragonal-to-orthorhombic transition of the pure halide CH3NH3PbI3. With further decreasing temperature, a second PL emission peak emerges in addition to the peak from the room-temperature phase. The transition on heating is found to occur at about 140 K, i.e., revealing significant hysteresis in the system. While PL decay lifetimes are found to be independent of temperature above the transition, significantly accelerated recombination is observed in the low-temperature phase. Our data suggest that small inclusions of domains adopting the room-temperature phase are responsible for this behavior rather than a spontaneous increase in the intrinsic rate constants. These observations show that even sparse lower-energy sites can have a strong impact on material performance, acting as charge recombination centres that may detrimentally affect photovoltaic performance but that may also prove useful for optoelectronic applications such as lasing by enhancing population inversion. © 2014 Author(s)

    Homogeneous emission line broadening in the organo lead halide perovskite CH3NH3PbI3-xCl

    No full text
    The organic-inorganic hybrid perovskites methylammonium lead iodide (CH3NH3PbI3) and the partially chlorine-substituted mixed halide CH3NH3PbI3-xClx emit strong and broad photoluminescence (PL) around their band gap energy of ∼1.6 eV. However, the nature of the radiative decay channels behind the observed emission and, in particular, the spectral broadening mechanisms are still unclear. Here we investigate these processes for high-quality vapor-deposited films of CH3NH3PbI3-xClx using time- and excitation-energy dependent photoluminescence spectroscopy. We show that the PL spectrum is homogenously broadened with a line width of 103 meV most likely as a consequence of phonon coupling effects. Further analysis reveals that defects or trap states play a minor role in radiative decay channels. In terms of possible lasing applications, the emission spectrum of the perovskite is sufficiently broad to have potential for amplification of light pulses below 100 fs pulse duration

    High charge carrier mobilities and lifetimes in organolead trihalide perovskites.

    No full text
    Organic-inorganic lead-halide perovskites have recently drawn great attention as novel absorbers and charge transporters in low-cost solar cells. It is still largely unknown what makes these materials so phenomenally well-suited for charge generation and conduction. Here we show that both CH3NH3PbI3 and CH3NH3PbI3−xClx exhibit exceptionally low mono-molecular and bi-molecular charge-carrier decay rates, defying the Langevin limit by at least 4 orders of magnitude. Using transient THz spectroscopy, we establish lower bounds for the high-frequency charge mobility of 11.6 cm 2/Vs for CH3NH3PbI3−xClx and 8cm2/Vs for CH3NH3PbI3, which are remarkably high for solution-processed materials. We deduce charge-carrier diffusion lengths as a function of charge density and find values exceeding a few microns for CH3NH3PbI3−xClx, under typical device operating conditions. For CH3NH3PbI3, diffusion lengths are a factor∼4 lower because of higher mono- and bi-molecular recombination rates. These findings underline the suitability of this material class for planarheterojunction device structures and highlight the potential for performance tuning through manipulation of the polar metal-halide bond
    corecore