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Solar cells based on the organic-inorganic tri-halide perovskite family of materials have 16 

shown remarkable progress recently, offering the prospect of low-cost solar energy from 17 

devices that are very simple to process.  Fundamental to understanding the operation of 18 

these devices is the exciton binding energy, which has proved both difficult to measure 19 

directly and controversial. We demonstrate that by using very high magnetic fields it is 20 

possible to make an accurate and direct spectroscopic measurement of the exciton binding 21 

energy, which we find to be only 16 meV at low temperatures, over three times smaller 22 

than has been previously assumed. In the room temperature phase we show that the 23 

binding energy falls to even smaller values of only a few millielectronvolts, which explains 24 
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their excellent device performance due to spontaneous free carrier generation following 25 

light absorption.  Additionally, we determine the excitonic reduced effective mass to be 26 

0.104me (where me is the electron mass), significantly smaller than previously estimated 27 

experimentally but in good agreement with recent calculations. Our work provides crucial 28 

information about the photophysics of these materials, which will in turn allow improved 29 

optoelectronic device operation and better understanding of their electronic properties 30 

 31 

 32 

The recent rapid development of perovskite solar cells is revolutionizing the photovoltatic (PV) 33 

research field, with the latest certified power conversion efficiencies reaching over 20% 1. 34 

Initially developed from the concept of the nanostructured excitonic solar cell where there is no 35 

requirement for long range charge or exciton diffusion [1-8], it has now become clear that due to 36 

the remarkable properties of the inorganic-organic perovskite family of materials ABX3 37 

(A=CH3NH3
+; B=Pb2+; and X = Cl-, I- and/or Br-) these cells[2-10] are capable of operating in a 38 

comparable configuration and with comparable performance to the best inorganic 39 

semiconductors, [7, 9,10]  where the solid absorber layer is sandwiched between n- and p-type 40 

charge selective contacts in a planar heterojunction configuration [7-8].  Despite this success 41 

several fundamental properties of the organic lead tri-halide perovskites remain controversial and 42 

poorly known.  In particular the binding energy of the excitons (R*), bound electron-hole pairs 43 

that are the primary photoexcited species created in the absorption process, is vital to 44 

understanding the way that the cells function. The operating mechanisms depend upon what 45 

fraction of excitons dissociate in the bulk material, giving rise to free charge transport, or what 46 

fraction need to be dissociated at heterojunctions within the cells.  Knowledge of the true exciton 47 
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binding energy is also crucial for interpreting spectroscopic measurements based on these 48 

materials, such as time-resolved spectroscopy. Values for R* reported in the literature cover a 49 

broad range from  2 to 55 meV11-17, with the larger values being initially adopted and a growing 50 

number of reports suggesting a wide range of lower values15-17. In addition basic parameters such 51 

as the effective masses of electrons and holes also remain to be directly measured in the 52 

archetypical material CH3NH3PbI3. A number of calculations of the band structure in the 53 

literature are able to reproduce the observed band gaps14,18,19 and these suggest that the 54 

conduction and valence bands are essentially isotropic and symmetrical14,18,19. A direct 55 

measurement of the exciton binding energy and effective masses is therefore crucial for our 56 

current understanding and for future development of this remarkable class of materials. 57 

In this work we describe the use of very high field inter-band magneto-absorption studies which 58 

allow us, unlike previous PhotoLuminescence measurements20, to make an accurate study of the 59 

family of free exciton states, which are the relevant excitations created in PV devices. In the low 60 

temperature orthorhombic phase  we establish that the exciton binding energy is only 16 meV, 61 

which is significantly smaller than has been previously assumed. We also investigate the room 62 

temperature tetragonal phase, which occurs above 160K11,19,  where we find the striking result 63 

that the binding energy falls to only a few millielectron volts. Our measurements give an 64 

accurate and independent value for the reduced effective mass and in addition, show that the 65 

essentially symmetric and isotropic conduction and valence bands of the organic-inorganic lead 66 

tri-halide perovskites makes them model semiconductors to demonstrate the optical properties of 67 

excitons in a high magnetic field. 68 

 69 
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In Fig. 1 we summarize the results of transmission measurements of a ~300-nm thick 70 

polycrystalline film of CH3NH3PbI3, deposited directly on a glass substrate, measured at 2 K in 71 

magnetic fields of up to 65 T in the Faraday configuration using a long (500ms) pulsed field 72 

magnet.  Close to the band edge (~1.6 eV), the spectra are dominated by the hydrogen-like 73 

exciton states and at higher energies the free carrier behaviour of the conduction and valence 74 

bands gives rise to a series of interband transitions between the van Hove singularities at the 75 

bottom of the Landau levels with energies given by: 76 = 	 +	 + 1 2 ℏ ±	1 2	 , 77 

where Eg is the energy gap, N=0,1,2,3.. is the Landau quantum number, ωc = eB/m*, B is the 78 

applied magnetic field, e is the elementary charge, m* is the reduced effective mass of the 79 

exciton given by, 1/m*=1/m*e+1/m*h, where me and mh are the electron and hole effective 80 

masses respectively, geff is the effective g-factor for the Zeeman splitting, and μB is the Bohr 81 

magneton. In the present case we use unpolarised light so that the last term is ignored. In contrast 82 

to the early magneto-optical studies on this material12,13 our spectra show a clearly resolved 1s 83 

exciton at 1.64 eV, which has a large diamagnetic shift, significantly larger than the peak width 84 

and larger than the values observed previously12,13.  In addition, the spectra we show in Fig. 1 85 

demonstrate several important new features as the field is increased. By 65T there is a clear 86 

sequence of 5 well-resolved Landau level transitions which develop in magnetic fields above 87 

30T.  Furthermore, a small shoulder develops on the high energy side of the 1s exciton peak 88 

which we identify as the 2s exciton absorption.  The appearance of the Landau levels and the 2s 89 

exciton state can be seen more clearly by taking the ratio of the high field spectra to zero field as 90 

shown in Fig. 1b and 1c, where the resonant absorptions become minima in the ratio of 91 

transmission.  This shows that the 2s state is clearly visible as a weak but gradually growing 92 
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absorption in the range 10 - 35 T.   Above 20 T a second absorption grows much more rapidly 93 

which we attribute to a combination of the 2p exciton and the first of the free-electron inter-band 94 

Landau level transitions.  The 2p exciton transition is forbidden at zero magnetic field but 95 

becomes allowed at high fields due to the re-construction of the hydrogenic energy levels which 96 

occurs once the cyclotron energy exceeds the exciton binding energy (ћωc > R*) 21.  At high 97 

fields the conventional atomic quantum numbers (n, l) are no longer valid and this state is 98 

renamed as (1,0) corresponding to the strongest bound state associated with the N=1 Landau 99 

level.   100 

 101 

The separation between the sequence of Landau levels visible directly in the absorption spectrum 102 

at 65T immediately allows us to estimate the reduced effective mass to be m* ≈ 0.1 me to within 103 

a few per cent accuracy, while the separation of the 1s and 2s states at low field (15 meV at 10 T) 104 

allows us to estimate an excitonic binding energy, R*, of order 20 meV, which is consistent with 105 

the condition  ћωc > R* for fields above 14T in agreement with our preliminary analysis of fig. 106 

1b. We will present a more detailed fitting to the full family of transitions below, which allows 107 

us to deduce a precise value of  R* being 16±2 meV.   The values for the effective mass are in 108 

good agreement with recent calculations14,18 and somewhat smaller than previous experimental 109 

estimates. The excitonic binding energy is much smaller than the early spectroscopic values12,13 110 

of 30-50 meV although in good agreement with a recently calculated theoretical value15 which 111 

takes into account the frequency dependent refractive index of the perovskite.  112 

 113 

We now perform a full fitting, where we also include data taken up to 150T using a fast pulse 114 

single turn magnetic field system at a fixed photon energy. In order to extract accurate values for 115 



[6] 
 

the effective mass and exciton binding energy from the magnetic field dependence of the 116 

transition energies it is important to use full numerical calculations for the magnetic field 117 

dependent transitions as the data cover a wide range from the low to the high magnetic field 118 

limits and no analytical solution exists for the hydrogen atom in a high magnetic field. To do this 119 

we use the values calculated by Makado and Magill21 which scale the most strongly bound 120 

excitonic energy levels En,0(γ)  by the use of the dimensionless parameter γ=ћωc/2R*. This 121 

allows us to fit the complete range of magnetic field values. In addition to the excitonic 122 

transitions, the higher energy transitions are known22 to become dominated by simple interband 123 

transitions between free carrier Landau levels as described above.  Fig. 2 shows the full fan 124 

diagram of measured transition energies, together with the calculated transition energies for the 125 

excitonic and free electron transitions and a schematic of the optically allowed transitions 126 

observed.  The values for the effective mass and exciton binding energy are then adjusted to 127 

globally fit the data. In practice the two parameters are dominated by very different parts of the 128 

data set and are not strongly interdependent.  129 

   130 

The observation of the 2s transition places strong constraints upon the exciton binding energy, 131 

while the slope and separation of the high field, high quantum number Landau levels strongly 132 

constrain the reduced effective mass value. Further confirmation of the exciton binding energy 133 

comes from our simultaneous fitting of the diamagnetic shift of the 1s state, as shown in the inset 134 

to Fig. 2a, where the binding energy is now also strongly constrained by the accurately 135 

determined effective mass.  We conclude that the excitonic transitions dominate for the N=0 136 

landau level (1s, 2s) and the N=1 (1,0) level up to ~50T, and free electrons dominate for N=1 137 

above 50T and for all higher Landau levels. In the intermediate region a weak splitting of the 138 
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N=1 level can just be detected where both transitions are occurring. This clear demonstration of 139 

the interchange between excitonic and interband free carrier transitions is usually masked in 140 

more conventional semiconductors by complications brought about by additional degeneracies, 141 

such as the light and heavy holes present in III-V or II-VI materials22,23 and is an illustration that 142 

in addition to their potential in applications, the organic-inorganic metal tri-halide perovskites 143 

can also act as excellent model semiconductors.  A further interesting observation from the fan 144 

charts in Fig. 2 is that the Landau level separations are not significantly decreasing at higher 145 

energies (and in a related observation the Landau level fans show good linearity).  This suggests 146 

that the approximation of a constant effective mass is good for a wide range of band energies and 147 

non-parabolicity effects are relatively small compared with some predictions24. 148 

 The value deduced for the effective mass of m*=0.104±0.003 me is remarkably close to 149 

that of 0.099 me predicted recently by Menendez et al 14 who have adjusted the amount of 150 

exchange coupling in order to match the experimentally measured values of the band gap, and 151 

Umari et al18, who find 0.11 me.  We find the exciton binding energy (R*)  to be 16±2 meV, in 152 

contrast to the earlier values of 37 to 50 meV reported in 12, 13, also determined at 4K, which 153 

were deduced by fitting only the 1s state without an independent measurement of the effective 154 

mass and using only a low magnetic field approximation and with much poorer experimental 155 

resolution. Our value here is also strongly supported by the extrapolation of the free electron 156 

transitions to zero magnetic field, which fixes the excitonic continuum.  157 

Several authors 14-17 have pointed out that using lower mass values (0.1 me) and 158 

depending on whether the low (ε  = 25.7) or high (ε  = 5.6) frequency dielectric constant is 159 

used18, 24 the conventional Wannier-Mott Hydrogenic model gives values for the excitonic 160 

binding energy (R*=m*e4/2ћ2ε2) anywhere from 2 -50 meV. In practice the exciton binding 161 
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energies are comparable to several of the phonon modes25 and so it is likely that the appropriate 162 

dielectric constant at the equivalent frequency will be intermediate between the low and high 163 

frequency limits or could approach the low frequency limit as discussed by Huang and 164 

Lambrecht 23 for CsSnX3 perovskites. Our values of R* and m* suggest a value of  ε ≈ 9 165 

assuming the hydrogenic model. In fact Even et al 15 have recently argued from fitting the 166 

lineshape of the low temperature absorption that the exciton binding energy should be on the 167 

order of 15 meV, and that as a result of the new rotational motion of the CH3NH3
+ cations in the 168 

high temperature phase there is an additional contribution to the dielectric screening which 169 

makes the exciton binding energy fall discontinuously to 5 meV at the transition to the high 170 

temperature phase where the photovoltaic cells operate.  In a similar analysis of the temperature 171 

dependent absorption, Yamada et al16 conclude that the exciton binding energy decreases 172 

continuously from 30 meV at 13K to 6 meV at 300K. 173 

 174 

An important factor in understanding the band structure of the organic-inorganic lead tri-halide 175 

perovskite is the presence of  structural phase transitions from cubic (T>350K) to tetragonal 176 

(T>145K) to orthorhombic (low T) which result in changes in band structure and band gap11,19.  177 

The tetragonal (room temperature) and orthorhombic phases have similar band structures, with 178 

almost symmetric and isotropic direct band gaps at the Γ-point, with the band gap increasing by 179 

~100 meV at the phase transition to the orthorhombic phase11,15, 16, 27, although the magnitude of 180 

the band gap change is dependent on the growth process15, 16.  Although the band structures are 181 

very similar the phase transition may be expected to produce significant changes in the phonon 182 

structure and consequently may significantly affect the dielectric constant and hence the exciton 183 

binding energy as discussed above.  184 
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 185 

In Fig. 3, we extend the interband magneto-optical spectra up to 150T using a fast pulse single 186 

turn magnetic field system, which shows the magnetic field dependent transmission for a series 187 

of temperatures at a fixed photon energy. From this data it is very easy to observe the influence 188 

of the lower temperature phase change.  Two strong transmission minima can be observed in the 189 

low temperature data which begin to move towards lower field values as the temperature 190 

increases. This is because the perovskite band gap increases 13 with increasing temperature, 191 

causing the interband magneto-optical transitions at a fixed energy to shift towards lower 192 

magnetic field values. Above 140K there is a sudden rapid shift upwards of the resonance fields 193 

caused by the structural phase transition to the high temperature tetragonal phase, which has a 194 

lower band gap.  We then repeat the magneto-optical study in this tetragonal phase using the fast 195 

pulse system as we show in fig. 3b. At these temperatures, significantly fewer resonances are 196 

resolved, but it is still possible to observe several different inter-Landau level transitions and it is 197 

possible to construct a good fan diagram(fig. 4b). This shows that the effective mass is 198 

essentially the same (m*=0.104±0.005 me) as at low temperature in the orthorhombic phase, 199 

although the band gap is slightly (~50 meV) smaller than at 2K. 200 

 201 

We show the optical density spectra taken in the long pulse system in Fig. 4a, which shows that 202 

the 1s exciton has considerably more broadening and as a result it is much harder to make an 203 

accurate analysis of the diamagnetic shift of the 1s transition energy, in comparison to that of the 204 

lower temperature phase. The exciton binding energy is more difficult to fit precisely because the 205 

absolute energy of the 1s exciton state is less certain and would need to be fitted with a 206 

knowledge of the scattering processes and the dielectric function.  A detailed examination of the 207 
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1s exciton absorption spectra, as in fig. 4a, shows that there is an anomalous behavior in which 208 

the transition becomes much more resolved at higher magnetic fields and actually moves down 209 

in energy at first (dashed line, fig. 4a).  Both the increase in intensity and the reduction in 210 

transition energy with increasing field suggest that the exciton binding energy is increasing with 211 

the magnetic field. We attribute this to a decrease in dielectric constant resulting from the 212 

additional magnetic binding of the exciton. 213 

 214 

 Using only the high field (B>50 T) spectra where Landau levels can be observed and the 1s 215 

exciton peak is well formed, we estimate a binding energy on the order of 10-12 meV in high 216 

magnetic fields.  We extrapolate the high energy free carrier Landau levels to a band edge energy 217 

very close to the apparent 1s exciton peak at B=0 which allows us to conclude that the exciton 218 

binding energy is much smaller at zero magnetic field, with a value less than our measurement 219 

uncertainty of a few meV.  This strongly supports the suggestion by Even et al15 that the binding 220 

energy is reduced to values of order 5 meV above the phase transition to the orthorhombic phase 221 

and the recent analysis of Yamada et al 16 that there is a decrease to around 6meV at room 222 

temperature.   223 

 224 

The overall picture is that there is a critical collapse of the exciton binding energy as a function 225 

of both increasing temperature and decreasing magnetic field. As the temperature increases any 226 

fall in binding energy decreases the frequency of motion of the electron and hole bound in the 227 

exciton leading to increased contributions to the dielectric constant from the many phonon 228 

modes and molecular rotations present in these materials. The fall in binding energy leads to a 229 

further increase in dielectric constant and the binding energy collapses to a value close to that 230 
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predicted by using the low frequency dielectric constant, giving a value of a few meV. When a 231 

magnetic field is applied the process is partly reversed due to the additional cyclotron motion 232 

which increases the binding energies. Similarly low exciton binding energies due to a frequency 233 

dependent dielectric constant have been predicted 26 in the CsSnX3 (X = I, Br, Cl) perovskite 234 

halide semiconductors which have very similar band and crystal structures to the organic-235 

inorganic lead tri-halide perovskites studied here, previously leading to significant experimental 236 

controversy 26,28. An immediate consequence of the temperature and magnetic field dependence 237 

of the exciton binding energy is that the interpretation of the earlier literature measurements as 238 

giving an exciton binding energy of 30-50 meV, which are based on the assumption of a constant 239 

binding energy as a function of magnetic field 12,13,or temperature 11, will be invalidated. Hence, 240 

our measurements show that the exciton binding energies are much smaller than previously 241 

concluded and explain why the properties of the organic-inorganic perovskites in the room 242 

temperature phase will be dominated by free carrier behavior as suggested by more recent time 243 

resolved studies17,20,25,27,30,31.   244 

  245 

We also show in Fig. 4 the temperature dependence of the magnetic field position of the N=1 246 

Landau level resonance, compared with the temperature dependence of the band gap as deduced 247 

from the film absorption. The sudden shift in resonance position of 63T at the phase transition 248 

temperature can be shown to be equivalent to a change in band gap of 105 meV from the slope of 249 

the N=1 resonance (1.67 meV/T), consistent with the 100 meV change in band gap deduced from 250 

absorption. This confirms that the magneto-spectroscopy is measuring the same fundamental 251 

band structure as the optical absorption. 252 

 253 
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Our basic conclusion is that the excitonic binding energy in the low temperature phase of the 254 

organic-inorganic perovskite, CH3NH3PbI3 is much smaller (16 ± 2 meV) than has previously 255 

been estimated and is comparable to conventional III-V semiconductors with a similar band 256 

gap29. Our measurements in the room temperature phase suggest that there is a critical collapse 257 

of the exciton binding energies at higher temperatures, as has been predicted by Even et al 15, due 258 

to the frequency dependent dielectric constant.  By room temperature the appropriate binding 259 

energy will be only a few milli-electron-volts and the photovoltaic device performance is 260 

essentially a free carrier phenomenon. This result conclusively shows that the very impressive 261 

performance of PV devices using this material1-10 can be attributed to the spontaneous generation 262 

of free electrons and holes following photo-absorption, thereby also resolving the apparent 263 

contradiction between initial reports of sizeable exciton binding energy values (30-50 meV) and 264 

recent reports of free carrier behavior 16,17,20,25,30-32 .  The reason for the difference between our 265 

observations and previous estimates of the binding energy is primarily the combination of higher 266 

quality, much more crystalline films, and the use of very high magnetic fields. This has enabled 267 

us to measure multiple excitonic transitions which allow precise spectroscopic measurements, in 268 

contrast to previous works which have relied exclusively on measuring the 1s exciton and require 269 

assumptions to be made about the dielectric constant and effective masses11-13, 17.   The effective 270 

mass values of ~0.1 me, which we have determined, are  in good agreement with recent 271 

calculations 14,18,19,24 but are also significantly lower than the earlier experimental estimates 12,13.   272 

References 273 

 [1] NREL Best research cell efficiencies:  http://www.nrel.gov/ncpv/images/efficiency_chart.jpg 274 



[13] 
 

 [2] Kim, H.-S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film 275 

mesoscopic solar cell with efficiency exceeding 9%. Scientific reports 2, 591 (1-7) (2012). 276 

[3] Burschka, J. et al. Sequential deposition route to high performance perovskite-sensitized 277 

solar cells. Nature 499, 316-320 (2013). 278 

[4] Im, J-H., Lee C.-R., Lee, J.-W., Park, S.-W., Park, N.-G., 6.5% efficient perovskite quantum-279 

dot-sensitized solar cell  Nanoscale 3, 4088-4093, (2011)  280 

[5] Heo, J. H. et al. Efficient inorganic-organic hybrid heterojunction solar cells containing 281 

perovskite compound and polymeric hole conductors. Nat Photonics 7, 487-492 (2013). 282 

[6] Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid 283 

solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643-647 284 

(2012). 285 

 [7] Liu, M., Johnston, B. M. & Snaith, H.J., Efficient planar heterojunction perovskite solar cells 286 

by vapour deposition, Nature, 501, 395-398  (2013). 287 

[8] Wang J. T-W., et al. Low-temperature processed electron collection layers of graphene/TiO2 288 

nanocomposites in thin-film perovskite solar cells. Nano Lett.  14, 724-730 (2014). 289 

 [9] Habisreutinger, S.N.,et al., Carbon Nanotube/Polymer composites as a highly stable hole 290 

collection layer in perovskite solar cells, Nano Lett. 14  5561-5568 (2014) 291 

[10]  Jung, H.S., and Park, N.-G., Perovskite Solar Cells: From Materials to Devices, Small, 11, 292 

10-25 (2015) 293 



[14] 
 

 [11] D’Innocenzo, V., et al., Excitons versus free charges in organo-lead tri-halide perovskites, 294 

Nature Communications 5, 3586 (2013). 295 

[12] Hirasawa, M., Ishihara, T.,  Goto, T., Ushida, K. and Miura, N. Magnetoabsorptin of the 296 

lowest exciton in perovskite-type compound (CH3NH3)PbI3,. Phyica B 201 427-430 (1994).  297 

[13] Tanaka, K. et al. Comparative study on the excitons in lead-halide-based perovskite-type 298 

crystals CH3NH3PbBr3 CH3NH3PbI3. Solid State Commun 127, 619–623 (2003).  299 

[14]  Menendez-Proupin, E., Palacios, P., Wahnon, P. and Conesa, J.C., Self-consistent 300 

relativistic band structure of the CH3NH3PbI3 Perovskite, Phys. Rev. B 90, 045207 (2014) 301 

[15]  Even, J, Pedesseau, L. and Katan, C.  Analysis of Multi-valley and Multi-bandgap 302 

Absorption and Enhancement of Free Carriers Related to Exciton Screening in Hybrid 303 

Perovskites,  J. Phys. Chem. C  118, 11566-11572 (2014) 304 

[16 ] Yamada, Y., Nakamura, T., Endo, M. Wakamiya, A. and Kanemitsu, Y.,  Photoelectronic 305 

Responses in Solution-Processed Perovskite CH3NH3PbI3 Solar Cells Studied by 306 

Photoluminescence and Photoabsorption Spectroscopy, IEEE J. of Photovoltaics, 5, 401-405 307 

(2015) 308 

[17] Lin, Q., Armin, A., Nagiri, R. C. R., Burn, P.L. and Meredith, P., Electro-optics of 309 

perovskite solar cells, Nature Photonics, 9, 106-112 (2014) 310 

[18]  Umari, P, Mosconi, E and De Angelis, F, Relativistic GW calculations on CH3NH3PbI3 and 311 

CH3NH3SnI3 Perovskites for Solar Cell Applications, Scientific Reports, 4 4467 (2014) 312 



[15] 
 

[19] Baikie, T. et al. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for 313 

solid-state sensitised solar cell applications. J. Mater. Chem A 1, 5628-5641 (2013). 314 

[20] Fang, H-H., Raissa, R., Abdu-Aguye, M., Adjokatse, S., Blake, G.R., Even, J. and Loi 315 

M.A., Photophysics of Organic-Inorganic Hybrid Lead Iodide Perovskite Single Crystals, Adv. 316 

Funct. Mater. 25 2378-2385, (2015) 317 

[21]  Makado, P.C. and McGill, N.C., Energy levels of a neutral hydrogen-like system in a 318 

constant magnetic field of arbitary strength, J. Phys, C: Solid State Physics. 19 873-885 (1986) 319 

[22] Watanabe, K., Uchida, K. and Miura, N., Magneto-optical effects observed for GaSe in 320 

megagauss magnetic fields, Phys. Rev. B, 68, 155312 (2003) 321 

[23]Weiler, M.H., Aggarwal, R.L. and Lax, B., Warping and inversion asymmetry induced 322 

cyclotron harmonic transitions in InSb, Phys. Rev. B, 17, 3269-3283 (1979) 323 

[24]  Brivio, F., Butler, K.T, Walsh, A and van Schilfgaarde, M.,  Relativistic quasiparticle self-324 

consistent electronic structure of hybrid halide perovskite photovoltaic absorbers,  Phys Rev. B 325 

89, 155204 (2014) 326 

[25]  Wehrenfennig, C.,  Liu, M, Snaith, H.J, Johnston, M.B. and Herz, L.M., Charge carrier 327 

dynamics in vapour-deposited films of the organolead halide perovskite CH3NH3PbI3-xClx, Energy 328 

& Environmental Science, 7, 2269-2275 (2014) 329 

[26]  Huang, L.-Y., and Lambrecht, W.R.L., Electronic band structure, phonons, and exciton 330 

binding energies of halide perovskites CsSnCl3, CsSnBr3, and CsSnI3 , Phys Rev. B 88, 165203 331 

(2013) 332 



[16] 
 

[27]  Wehrenfennig, C.,  Liu, M, Snaith, H.J, Johnston, M.B. and Herz, L.M. Charge carrier 333 

recombination channels in the low-temperature phase of organic-inorganic lead halide perovskite 334 

thin films, APL Materials, 2, 081513, (2014) 335 

[28]  Chena, Z., et al., Photoluminescence study of polycrystalline CsSnI3 thin films: 336 

Determination of exciton binding energy, J. Lumin. 132 345-349 (2012) 337 

[29]  Dvorak, M., Wei, S.-H. and Wu, Z., Origin of the Variation of Exciton Binding Energy in 338 

Semiconductors, Phys. Rev. Lett. 110, 016402 (2013) 339 

[30] Ponseca, C.S., Savenije, T.J., Abdellah, M., Zheng, K, Yartsev, A., Pascher, T., Harlang, T., 340 

Chabera, P., Pullerits, T., Stepanov, A., Wolf, J-P. and Sundstrom, V., Organometal Halide 341 

Perovskite Solar Cell Materials Rationalized: ultrafast Charge Generation, High and 342 

Microsecond-Long Balanced Mobilities, and Slow Recombination, J.A.C.S, 136, 5189-5192 343 

(2014) 344 

[31]  High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites, 345 

Wehrenfennig, C. , Eperon, G.E. , Johnston, M.B. , Snaith, H.J. and Herz, L.M., Adv. Materials, 346 

26 1584-1589 (2013) 347 

[32]  Nie, W., et al., High-efficiency solution-processed perovskite solar cells with millimeter-348 

scale grains, Science, 347, 522-525, (2015) 349 

[33]  Nicholas, R.J., Solane, P.Y. and Portugall, O., Ultra-high magnetic Field study of the layer 350 

split bands in Graphite. Phys. Rev. Lett. 111, 096802 (2013) 351 



[17] 
 

[34] Portugall, O., Puhlman, N. Mueller, H.U., Barczewski, M., Stolpe, I., von Ortenberg, M., 352 

Megagauss Magnetic Fields in Single-Turn Coils: New Frontiers for Scientific Experiments",  J. 353 

Phys. D: Applied Physics 32 2354-2366 (1999) 354 

 355 

Acknowledgments 356 

 The authors thank: Meso-superstructured Hybrid Solar Cells –MESO NMP-2013-SMALL7-357 

604032 project. HJS thanks for funding the Engineering and Physical Sciences Research Council 358 

(EPSRC), the European Research Council (ERC-StG 2011 HYPER Project no. 279881).  Dr. S. 359 

Stranks thanks Worcester College, Oxford, for additional financial support. ANR JCJC project 360 

milliPICS, Region Midi-Pyrenee contract MESR 13053031. This work was supported by 361 

EuroMagNETII under the EU contract No. 228043. 362 

 363 

Author contribution 364 

Atsuhiko Miyata, Anatolie Mitioglu, P.P, O.P and R.J.N collected and analysed the data.  J. T-365 

W. W. and S.D.S. prepared the samples.  All authors contributed to the interpretation and the 366 

manuscript preparation. R.J.N. supervised and initiated the project.  367 

 368 

Figure captions 369 

 370 

Figure 1: Magnetic field dependence of the optical density for the perovskite CH3NH3PbI3 371 

(a) A sequence of optical density (Log(1/transmission)) spectra measured during a single pulse 372 
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of the magnetic field. To improve the resolution of smaller field dependent features  (b)  and (c) 373 

show sequences of ratios of the transmission in magnetic field T(B) to that measured at zero field 374 

T(0), where the resonant absorption features correspond to minima. For easier comparison 375 

spectra are offset.  The feature highlighted at 2.03 eV is a band edge absorption from a 376 

previously undetected higher energy band edge and will be the subject of a future publication. 377 

 378 

Figure 2: Energy ‘Fan’ diagrams. (a) Full fan using data from long pulse fixed field spectra 379 

(black circles) and fixed energy fast field sweep data (red stars). The calculated transition 380 

energies are shown for the free electron and hole levels (solid lines) and the excitonic transitions 381 

(dashed lines). Inset to (a) lower fields measured using fixed field spectra. (b) shows a schematic 382 

of the energy levels and transitions between the free electron and hole levels (solid lines) and the 383 

excitonic transitions (dashed lines). 384 

 385 

Figure 3: Single turn coil results. Plots of the magneto-transmission measured using a single 386 

turn fast pulse magnetic field, with schematic of the experimental system. For better comparison 387 

spectra are offset. (a) shows the temperature dependence with the arrows indicating the position 388 

of the N=1 inter Landau level transition. The inset shows a schematic of the single turn 389 

experimental system showing the coil and its firing circuit, the sample and the optical fiber 390 

illumination and collection system. (b) shows the transmission spectra in the tetragonal 391 

(intermediate temperature) phase with spectra measured for different wavelengths in the 392 

temperature range 155 – 190 K.  The linked arrows show the positions of the N=1 and N=2 393 

transitions. 394 
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Figure 4: Transmission in high temperature tetragonal phase (a) optical density, with the 395 

dashed line showing the anomalous behavior of the 1s exciton transition. (b) fan diagram. (c) 396 

Temperature dependent band gaps and resonance positions for the N=1 inter-Landau level 397 

transition. 398 

 399 

 400 

 401 

Methods 402 

Samples were prepared on glass substrates cleaned sequentially in hallmanex, acetone, 403 

isopropanol and O2 plasma. The polycrystalline CH3NH3PbI3 perovskite films were deposited in 404 

a nitrogen-filled glovebox following the interdiffusion preparation methods described 405 

previously5.  In brief, a PbI2 layer was first deposited on cleaned glass by spin-coating 406 

(speed/ramp = 6000rpm/6000 rpm/s, time = 35s) from a precursor solution of PbI2 in DMF with 407 

concentration of 450 mg/ml, followed by drying at 70°C for 5 min. Then the MAI layer was 408 

deposited on dried PbI2 film by spin-coating (speed/ramp = 6000rpm/6000 rpm/s, time = 35s) 409 

from a precursor solution of MAI in isopropanol with concentration of 50 mg/ml, followed by 410 

annealing at 100°C for 1 hour. The perovskite films were sealed by spin-coating a layer of the 411 

insulating polymer poly(methyl methacrylate) (PMMA; 10 mg/ml, speed/ramp = 1000rpm/1000 412 

rpm/s, time = 60s) on top in order to ensure air-and moisture-insensitivity. 413 

 414 

The magneto-optical measurements have been performed using 70 T long-duration and 150T 415 

short duration pulsed magnets in the high magnetic field laboratory in Toulouse.  For the long 416 
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pulsed measurements (~500 ms duration) the sample was immersed in liquid or gaseous helium 417 

in a cryostat. A tungsten halogen lamp was used to provide broad spectrum in the visible and 418 

near infra-red range. The absorption was measured in the Faraday configuration in which k, the 419 

wave propagation vector is parallel to the magnetic field B.  A nitrogen cooled CCD array 420 

coupled to a spectrometer collected the light transmitted through the sample. The exposure time 421 

was 3 ms in order to limit variations in the magnetic field during acquisition. Thirty spectra were 422 

taken during a 70 T shot of the magnetic field. The magnetic field was measured using a 423 

calibrated pick-up coil. All spectra were normalized to both the incident intensity and by the zero 424 

field transmission to produce absolute and differential transmission spectra.   For the short 425 

duration (10μs) pulsed measurements a series of diode and Ti-Sapphire laser lines was sent 426 

through and collected from the sample using fiber optics and detected using a fast (100MHz) 427 

silicon detector and high speed digital oscilloscope33. The sample was mounted inside a non-428 

conducting helium flow cryostat and was cooled separately for each measurement.  The magnetic 429 

fields were generated by a semi-destructive single turn coil system using 10mm coils33,34.430 
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