810 research outputs found

    Wannier Function Approach to Realistic Coulomb Interactions in Layered Materials and Heterostructures

    Get PDF
    We introduce an approach to derive realistic Coulomb interaction terms in free standing layered materials and vertical heterostructures from ab-initio modelling of the corresponding bulk materials. To this end, we establish a combination of calculations within the framework of the constrained random phase approximation, Wannier function representation of Coulomb matrix elements within some low energy Hilbert space and continuum medium electrostatics, which we call Wannier function continuum electrostatics (WFCE). For monolayer and bilayer graphene we reproduce full ab-initio calculations of the Coulomb matrix elements within an accuracy of 0.20.2eV or better. We show that realistic Coulomb interactions in bilayer graphene can be manipulated on the eV scale by different dielectric and metallic environments. A comparison to electronic phase diagrams derived in [M. M. Scherer et al., Phys. Rev. B 85, 235408 (2012)] suggests that the electronic ground state of bilayer graphene is a layered antiferromagnet and remains surprisingly unaffected by these strong changes in the Coulomb interaction.Comment: 12 pages, 8 figure

    Bandwidth renormalization due to the intersite Coulomb interaction

    Full text link
    The theory of correlated electrons is currently moving beyond the paradigmatic Hubbard UU, towards the investigation of intersite Coulomb interactions. Recent investigations have revealed that these interactions are relevant for the quantitative description of realistic materials. Physically, intersite interactions are responsible for two rather different effects: screening and bandwidth renormalization. We use a variational principle to disentangle the roles of these two processes and study how appropriate the recently proposed Fock treatment of intersite interactions is in correlated systems. The magnitude of this effect in graphene is calculated based on cRPA values of the intersite interaction. We also observe that the most interesting charge fluctuation phenomena actually occur at elevated temperatures, substantially higher than studied in previous investigations.Comment: New appendix on benzen
    corecore