329 research outputs found

    Magnetization reversal and two level fluctuations by spin-injection in a ferromagnetic metallic layer

    Full text link
    Slow magnetic relaxation and two level fluctuations measurements under high current injection is performed in single-contacted ferromagnetic nanostructures. The magnetic configurations of the samples are described by two metastable states of the uniform magnetization. The current-dependent effective energy barrier due to spin-transfer from the current to the magnetic layer is measured. The comparison between the results obtained with Ni nanowires of 6 μ\mu m length and 60 nm diameter, and Co (10 nm)/Cu (10 nm)/Co(30 nm) nanometric pillars of about 40 nm in diameter refined the characterization of this effect. It is shown that all observed features cannot be reduced to the action of a current dependent effective field. Instead, all measurements can be described in terms of an effective temperature, which depends on the current amplitude and direction. The system is then analogous to an unstable open system. The effect of current induced magnetization reversal is interpreted as the balance of spin injection between both interfaces of the ferromagnetic layer.Comment: 9 pages, 8 figure

    Conditions for the generation of spin currents in spin-Hall devices

    Full text link
    We investigate the out-of-equilibrium stationary states of spin-Hall devices on the basis of the least dissipation principle. We show that, for a bulk paramagnet with spin-orbit interaction, in the case of the Hall bar geometry the principle of minimum dissipated power prevents the generation of transverse spin and charge currents while in the case of the Corbino disk geometry, transverse currents can be produced. More generally, we show that electric charge accumulation prevents the stationary spin to charge current conversion.Comment: 2 figure

    Spin-transfer torque induced reversal in magnetic domains

    Get PDF
    Using the complex stereographic variable representation for the macrospin, from a study of the nonlinear dynamics underlying the generalized Landau-Lifshitz(LL) equation with Gilbert damping, we show that the spin-transfer torque is effectively equivalent to an applied magnetic field. We study the macrospin switching on a Stoner particle due to spin-transfer torque on application of a spin polarized current. We find that the switching due to spin-transfer torque is a more effective alternative to switching by an applied external field in the presence of damping. We demonstrate numerically that a spin-polarized current in the form of a short pulse can be effectively employed to achieve the desired macro-spin switching.Comment: 16 pages, 6 figure
    corecore